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ABSTRACT
:....-

A mathematical model is developed to analyze the seismic
response of a drydocked vessel in three degrees of freedom; N.

vessel rotation about its keel and vessel horizontal and
vertical translations relative to the drydock cradle. Data
from eleven actual vessel-drydock systems and the time -
acceleration history of an earthquake are implemented to
predict vessel three degree of freedom response during an
earthquake. Vessel seismic response and the resultant drydock
forces are compared to vessel-drydock system failure criteria
to determine stability of the system during earthquakes. The -
three degree of freedom vessel response model is compared to a
one and two degree of freedom vessel response models and a -
model in which seismic loading is simulated by a single static
force. The three degree of freedom vessel motion is shown to
be the most accurate method for analyzing vessel-drydock 6 ..
system failure criteria.
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1.0 INTRODUCTION

1.1. BackQround

In the design of a drydock for military vessels, an

important factor is the environmental-generated forces that -.

are found in the drydock cradle which supports the ship.

Earthquakes and the wind are considered the two most

significant environmental loading factors. This thesis
explores the seismic loading aspect of the problem.

Regardless of its location, any U.S. Navy ship that is

nuclear powered and in drydock is considered to be in a high

seismic risk area. Currently the Navy defines a high seismic

risk area as one in which earthquake forces be approximated by

a steady horizontal force of 0.2 g times the vessel mass

acting at the center of gravity. The drydock can be analyzed

to see if it can withstand this quasi-static loading.

1.2 Previous Work
U-.

In 1981 B.V. Viscomi studied the seismic response of a

drydocked submarine using a single degree of freedom model

(14]. This analysis assumed that the vessel was allowed to

rotate about the keel. Viscomi used the time history

acceleration record of the North-South component of the 1946

El Centro, CA Earthquake, California Institute of Technology

processing scheme. The vessel was analyzed for system failure

(i.e. the vessel lifting off of a row of side blocks).

A thesis by C.F. Barker in 1985 [1) used a two degree of

freedom model to study seismic response. Employing the 1946

El Centro Earthquake, Massachusetts Institute of Technology

-11- ",. .''
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standard processing scheme, Barker analyzed rotation about the

keel plus horizontal relative translation between the vessel

and the drydock cradle perpendicular to the vessel longitudal

axis. The two degree of freedom model permitted the analysis

of drydock cradle failure: block sliding and tipping, which

were not possible to analyze in Viscomi's one degree of

freedom model, along with block liftoff.

1.3 Contributions of This Thesis

* This thesis develops a three degree of freedom model of a

vessel in drydock. Motion will be permitted in three

directions: rotation about the keel and relative

translations, horizontal and vertical, between the vessel and

the drydock cradle. The three degree of freedom model will

make possible the analysis of drydock cradle failure:

additional block crushing forces due to vertical motion, which

was not conceivable in the previous one and two degree of

freedom models developed by Viscomi and Barker respectively,

along with block sliding, tipping and liftoff.

The seismic input for the three degree of freedom model

is the time acceleration history of the North-South component

of the 1946 El Centro, CA Earthquake, Massachusetts Institute

of Technology standard processing scheme. The MIT version of .

the El Centro Earthquake acceleration record is described in

reference [9] , and is displayed graphically in Figure 1. 1

1.4 Outline of This Thesis

Section 2 of this thesis describes the vessel-drydock

system for the reader and introduces terms which are used

throughout the thesis. Section 3 describes the various

-12-
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failure mechanisms found in the vessel-drydock system which

can occur.

Section 4 examines the modelling of the vessel-drydock

system under seismic loading. Section 4.1 describes the

quasi-static loading method, and Section 4.2 develops the one

degree of freedom equation of vessel motion model. Section

4.3 develops the two degree of freedom equations of vessel

motion model. Finally, Section 4.4 develops the three degree

of freedom equations of motion model.

Section 5 discusses the system parameters that are .

required for the mathematical model found in Section 4.

Included in this Section is the modelling of block stiffness.

Eleven typical vessel-drydock system configurations are

studied to be implemented into Section 6.

Section 6 examines methods of evaluating the one, two and 4

three degree of freedom models found in Section 4. Section

6.1 evaluates the linear equations of motion models using

modal analysis method. Section 6.2 evaluates both linear and

non-linear equations of motion models using a fourth-order

Runge-Kutta numerical analysis scheme. Section 6.3 explains -'

the response spectrum method of determining the maximum value

of vessel seismic response. Section 6.4 determines system

response using quasi-static force method.

Section 7 describes the development and testing of the .

one, two and three degree of freedom vessel motion computer

programs, and contains the results for a seismic analysis of -.-

several actual vessel-drydock systems.

Section 8 summarizes the response predictions for several

"4 -13-
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actual vessel-drydock systems obtained with quasi-static, one

degree of freedom, two degree of freedom and three degree of

freedom analysis methods, and conclusions are drawn.

Appendix 1 is an example listing of the fourth-order

Runge-Kutta computer program. Appendix 2 is an example

listing of the modal analysis computer program. Finally,

%I Appendix 3 describes the modal analysis of the two and three

degree of freedom vessel-drydock systems and predicts maximum

system response using the response spectrum method of analysis

and modal participation factors.

% %
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2.0 THE VESSEL-DRYDOCK SYSTEM

2.1 General Description

In order to perform inspection, maintentance and repair

on the outer hull of a ship, it is necessary to place the

vessel in a drydock. A drydock is a concrete encasement built

into the earth. At one end of the drydock is a flood gate to

allow the entry and departure of the vessel. A cradle, formed

by drydock blocks, is built upon the drydock floor in order to

support the ship once the water is pumped out of the

encasement. The drydock must be able to hold the weight of

the vessel and cradle. -'.,

Due to the various hull configurations associated with .
1Pq

the different classes of ships, the cradle component of the ... ,

drydock-cradle-vessel system is varied to suit a particular

docking situation. The cradle accomplishes the transfer of b

vessel weight to the drydock floor, provides stable support to

the vessel and allows access to the vessel hull. This cradle

is usually constructed of timber, concrete, or a timber-

concrete composite.

2.2 System Component ..

The primary components of the drydock-cradle-vessel

system are shown in Figure 2.1. This section defines terms,

related to docking, used in this thesis to describe the system

components.

-16-
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1. Blocks - The units, consisting of timber, concrete, steel
and other materials, which together make up the cradle.

2. Cradle - A framework of blocks which supports 
the vessel

when the drydock is dewatered.

3. KG - The distance between the vessel baseline (ship's #.

keel) to its vertical center of gravity. e

4. Keel Blocks - The center blocks, directly beneath the
vessel's keel.

5. Pier - A column built of blocks that extends from the
ship hull to dock floor.

6. Side Blocks - The blocks located to the right and left of
the keel blocks.

7. Ton - A long ton, 2240 lbs.
p..".

8. g- Acceleration of gravity, 32.2 ft/sec2 . -

K. -A

* -. o- -

A 

.I
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3.0 VESSEL-DRYDOCK SYSTEM FAILURE MECHANISMS

There are four failure modes that the vessel-drydock

system can exhibit: block crushing, block sliding, block

a row of blocks).

3.1 Block Crushinr6

A block can support compressive stresses linearly until

the blocks' proportional limit is exceeded. The proportional

limit is a material property of the block and is the maximum

compressive stress at which stress is still linearly

proportional to strain. If the compressive proportional limit

is exceeded, the block is considered to have failed.

3.2 Block Sliding6

Due to friction at the interfaces between the blocks and

the vessel and between blocks with other blocks, drydock

blocks will have the tendency to resist sliding when subjected

to vertical and horizontal loads. This is true when in the

absence of mechanical fasteners.

First consider the blocks that form the keel pier.

Figure 3.1 shows that the resistance of the keel pier to

sliding is

H = V'1V (block-block interface)

and H -12V (vessel-block interface) --

where

H = horizontal resisting force

Vl = coefficient of friction, block-block interface

2 coefficient of friction, block-vessel interface 4-

V =vertical load on the blocks.""'

-19-
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Failure of the keel pier due to sliding will occur when

the ratio of horizontal force to the vertical force is greater '?%

than the lowest coefficient of friction found in the block. In

other words, sliding occurs when

H > ( 1 or 112 )V
As with the keel piers, the resistance of the side piers

to sliding will depend on the interface which offers the least

resistance, the block-vessel interface or the block-block

interface. However, this case is more complicated due to the

complex geometry of the side pier as shown in Figure 3.2.

The block-vessel interface of the side pier is examined

and shown in Figure 3.3. An arbitrary force F at some angle

from vertical is applied to the face for the side block cap.

At this interface, the horizontal and vertical block force

reactions are:

Normal Force = H sink + V cos"

Tangential Force = H cosO - V sine.

where H = Horizontal Reaction

V Vertical Reaction

Block Inclination Angle.

Using the formula for horizontal sliding resistance, H =..

V, previously introduced in the keel pier case and the

above equations yields

H cost'- V sinq = P2 (H sine + V cost). -

Rearranging the above equation gives

H P:, cos6 + sin.
V cost -U sih..

or

V 2

-20-
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where
w e 2 cos' + sin,
2 cos t -~'sln

< -,

For the block-block interface of the side pier, sliding

resistance is found by taking the vertical and horizontal

components of the applied force, F, and using them in the

formula H = 1'l V. Like in the keel pier, failure of the side

pier due to sliding will occur when the following is satisfied

There is a critical angle a where no slippage occurs.

Referring again to Figure 3.3, this angle can be calculated by

comparing the maximum tangential force Ft max the interface

can have without slipping and the corresponding normal force

Fn. The following relationship holds

Ft max = lFn

Finally,

a = arc tan .

Since the applied force F acts in a straight line through all

blocks to the ground, the angle o for each interface must be ,

calculated. If force F is applied outside of these angles,

slippage will occur.

3.3 Block Overturnin
I I "1

The third failure mechanism is the overturning of a block

due to an applied force. The line of action of this force

must fall within the middle one-third of the base of the

block, as shown in Figure 3.4, or the block will tip over.

In order to show the region that the block will remain

upright, the inclined force F must be broken into a transverse

-21-
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component Fh and a vertical component Fv. Superposing the

bending and axial stresses caused by Fh and Fv gives the

resultant stress at any point in the block as

xLv Fv "
= iFh A

where L = block height -
5 .-%

A = base area, here bh

Iz = base moment of intertia, here bh3/ 1 2 .

The minimum stress point on the bottom of the block

occurs at point M (Figure 3.4), a distance -h/2 from the z

axis. Hence, F
6L v(x m bh h b-h -..'

When cxm at M is negative, compressive stress is present and

the block is stable. When c., at M is positive, tensile

stress is present and the block will overturn since no

fasteners hold block to the ground to develop tensile stress.

The limit of block stability is when

(Gx)m = 0

Thus, the following equation holds
hEh 6L v"

This condition exists when force F is applied at an angle such

that the line of force lies within the one-third of the base

of the block. If the line of force is outside this region,

the block will tip.

3.4 Vessel Liftoff 14

The fourth and final failure mode occurs when the vessel

breaks contact with either the side or keel piers. This

failure occurs when the dynamic deflection of a row of blocks

is equal to, or exceeds the average static deflection of the

-22-
AM

:~ ~~ . .. .- ~.- - -p - ~ -. . ~~ o. .- I



blocks. The static deflection of blocks is given by

2KW2Ksv Kkv

where W = submarine weight .0%0

Ksv = side pier vertical stiffness

Kkv = keel pier vertical stiffness#

The dynamic deflection can be due to vertical displacement y,

rotational displacement e, or a combination of both.

I Vi

-2 .3-
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FIGURE 3.1
Keel Pier Forces
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FIGURE 3.2
Side Pier Forces, General I
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4.0 MATHEMATICAL MODELS OF VESSEL-DRYDOCK SYSTEM

This portion of the thesis discusses the modelling of the

drydocked submarine subjected to a seismic load. Models will h

include a quasi-static method, one, two and three degree of

freedom mathematical models. The models developed in this

section will be analyzed in Section 6 and 7 to predict the

vessel seismic response.

4.1 The Quasi-static Method of Modelling Seismic Response

4.1.1 Approach5 ,6

Current U.S. Navy design method for submarine's seismic

response will be examined in this section. The submarine is

described as a rigid cylindrical body with its weight evenly "

dispersed longitudinally.

The quasi-static force method replaces the earthquake

motions by a force corresponding to the vessel mass time

0.2 g. This force is horizontally applied to the submarine's

center of gravity in the tranverse direction. The drydock

blocking system is determined by the evaluation of the loads

generated by the quasi-static force.

4.1.2 Force Equations

The application of the static force to the center of

gravity of the submarine in drydock is represented in Figure

4.1. The seismic overturning moment, Ms, is defined as

Ms = (A/g) (a) (KG) (2240) ft-lb

where

A = vessel displacement in long tons

g = acceleration of gravity

a = vessel's center of gravity acceleration.

-27-
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Current U.S. Navy design practice states that the acceleration

of the submarine's center of gravity, a, should be set equal

to 0.2 g. Hence

Ms = 448(A) (KG) ft-lb

After determining the seismic overturning moment, the

number of sideblocks required on one side of the 
vessel is

M

A S L
p

where N = # of side blocks required in the row

A = contact area of a block in square inches

Sp = proportional limit of the block cap in lb/in
2

L = distance between centerline of keel and side
blocks, in feet, as shown in Figure 4.1.

-S 4.1.3 Vessel Response in the Ouasi-static Load
Method

The application of a force applied at a vessel's center

of gravity will generate reactionary side block forces in the

vertical direction to oppose the seismic moment, as shown in

Figure 4.2. Summation of moments about the keel yields the

equation

EM= - L(Fsr + Fmr) + L(Fsl - Fml) 0 (4.1.1)

where '.9

Fs = static pier forces (left and right)

Fm = pier forces due to the applied moment (left and right),

Due to symmetry in the vessel-drydock system, the

applied moment resistive forces in the side blocks are equal

%°-2 8

.9.
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in magnitude but opposite in direction. Thus, Equation 4.1.1

simplifies to the form

Ms = 2L(Fm) (4.1.2)

where Fm = Fml = Fmr.

The force Fm is equal to the side pier compression

displacement, 6 m, times its vertical stiffness, Kvs. This

compression displacement can be expressed as

6m = L sin(e). (4.1.3)

where e = angle or vessel rotation about its keel.

Assuming the rotational angle is small, Equations 4.2.1 and

4.1.3 are combined to yield

M
2L 2  K"'-'"

2L V (4.1.4)

4.2 One Degree of Freedom: Rotational Response

4.2.1 Approach

A one degree of freedom mathematical model of a submarine

in drydock is developed in this section. The submarine is

identified as a rigid cylindrical body with an even

longitudinal weight distribution. The system damping and

stiffness are provided by the drydock blocking arrangement.

System excitation is due to seismic ground accelerations.

Other assumptions are

- The keel and side piers remain vertical during the

ground motions,

* - no slippage between the block cradle and drydock, and

the keel and side piers bases accelerate at the same "-"-"
rate as the drydock (ground).

The idealized model of the vessel-drydock system is shown

-2.-D -
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in Figure 4.3. In this system, vessel motion is restricted to

rotation about the keel. The side piers are modelled as

vertical due to typically small angles or inclination of the

tops of the side piers. Only vertical displacements in the

side piers are considered.

The one degree of freedom mathematical model predicts and

analyzes vessel rotational response about its keel caused by

seismic ground accelerations normal to the submarine's

longitudinal axis. The resultant angle or rotation, expressed

in radians, and side pier forces, generated by the rotation,

are compared to applicable pier failure criteria found in

Section 3, to see if the blocking arrangment will remain

intacted.

4.2.2 One Degree of Freedom Equation of Motion Model

For the one degree of freedom case, the keel is the

origin with clockwise rotation, e, positive. The simplified

vessel-block system showing coordinate e at rest and when

excited are shown in Figures 4.3 and 4.4 respectively. The

moment equilibrium equation about the keel (origin) is:

ZMk= Ik + MKGX - MKGyg sine

= B/2(Flsv - Fldv) - B/2(F 2 sv + F2dv) + WXG sin0 (4.2.1)

where Ik = Mass moment of inertia of vessel about the keel

M = Vessel Mass

Flsv=F2sv = static side block forces in the vertical direction

(Figure 4.4)

FldvF2dv = dynamic side block forces in the vertical

-30-
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direction (Figure 4.4)

W = vessel weight (Mg)

and XgYg = seismic ground accelerations in their respective

directions

This equation can be simplified by the following: 'V

1.) The left and right side block rows have the same

vertical spring constant, Ksv, have the same static

deflection and equal but opposite dynamic deflection due

to symmetry, i.e.

Flsv = F2sv = Fsv (4.2.2)

and IFldvI= IF2dvI= Fdv. (4.2.3)

2.) The dynamic side block force, Fdv, as seen from Figure

4.5 equals to a force due to the modelled spring

displacement plus a dissipative force due to system

damping. In other words,

4. Fdv(spring) = (B/2)Ksv sin6

and Fdv(dissipative) = C(B/2) "

or when combined,

Fdv= B/2 (Ksv sine + Ce) (4.2.4)

where Ksv = vertical spring constant of the side blocks

C = vertical damping coefficient of the side blocks

Substituting Equations 4.2.2, 4.2.3, and 4.2.4 into

Equation 4.2.1 and rearranging components yields

Ik 6 + (B 2 /2)C; + [(B2/2)Ksv- W KG] sine
-MKGXg+MKGyg sin 6  (4.2.5)

An additional simplification is that since eis very small,

sin .
.4.'.-

The final simplification is that damping is expressed as a

-31- .;
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fraction of critical damping. To do this, allow

(B2/2)C = E Ccr = 2E Ik n '

where viscous damping factor(B 2C/2Ccr)

Ccr = critical damping coefficient = 2 1 k~n

n = system undamped natural frequency. '. .

Now, Equation 4.2.5 simplified to

Ik6 + 2 IK wn6 + [(B2/2)Ksv - WKG]6

=-NGXg + MKG yg e (4.2.6)

The non-linear term, MKG ;gO, found in the equation of

motion will be removed at this time to linearize Equation

4.2.6 since e is assumed to be small. The effects of the

non-linear term will be evaluated in Section 6 and 7.

The final form of the linearized one degree of freedom

equation of motion is

mle + C1 5 + kl = -m2 Xg (4.2.7)

where mI = Ik

C1 = 2 I k h .

kI = (B2/2)Ksv - W KG

m2 = M KG.

In matrix form,

21 ]- ' 
1 m L --'-.,-- % A.%,o

To simplify the explanation, the matrices will be redefined as

[A){y} + [B]I{y) = {E(t)) (4.2.8)

where

[01 M [B] = 1
m 1  I k 1 0 k
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1
{y} = {E(t)} =

Equations 4.2.6 and 4.2.8 will be solved in Sections 6 and 7.

4.3 Two Degree of Freedom: Rotational and Horizontal
Translation Response

4.3.1 Approach

This section develops a two degree of freedom

mathematical model of a drydocked submarine. As in the case

of the one degree of freedom (Section 4.2.1), the model

assumptions still hold, i.e. a rigid cylindrical body, keel

and side piers remain vertical, no slippage between the block

cradle and drydock, and the bases of the keel and side piers

accelerate at the same rate as the drydock (ground).

The idealized model of the vessel-drydock system is shown

in Figure 4.6. In this system, vessel motion is restricted

to rotation about the keel, and in horizontal transverse

translation relative to the keel and side pier supports. The

approach for determining vessel-drydock failue is identical to

the one degree of freedom case except for the addition of

sliding and tipping failure modes.

The two degree of freedom mathematical model predicts and

analyzes submarine rotational and transitional response caused

by seismic ground accelerations normal to the vessel's

longitudinal axis. The rotational response is in radians, the

translational response in inches, and both responses are -.

expressed as a function of time. The keel and side pier

forces are compared to applicable pier failure criteria found

-33-
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in Section 3.

4.3.2 Two DeQree of Freedom Ecquation of Motion Model

As in the one degree of freedom case, the keel is the

origin for the two degree of freedom system with clockwise

rotation, b, is positive. The linear relative translation

coordinate, x, is defined with respect to vessel and drydock

translation relative to the ground. Defining u as the "-

position of the submarine keel relative to the ground, then .'-

the following relationships hold:

X = U - Xg

u = X + Xg

and u x + Xg. (4.3.1)

The simplified vessel-block system showing coordinates (6 and

x) at rest and when excited are shown in Figures 4.6 and 4.7

respectively.

A balance of forces in the x direction, as shown in

Figure 4.7, yields the first equation of motion .....

ZFx = Mu + MK-G - = (FIsh - Fldh) - (F2sh + F2dh)

- (F3sh + F3dh) (4.3.2)

where Flsh, F2sh, F3sh = static block forces in the horizontal
direction at their respective
position

Fldh, F2dh, F3dh = dynamic block forces in the
horizontal direction at theirrespective position.

The above equation can be simplified by the following:

1) The left and right side block rows have the same

horizontal spring constant, Ksh, have equal but opposite

static horizontal deflection and the same dynamic horizontal
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deflection due to symmetry, i.e.,

Fish + F2sh =0

Fldh = F2dh (4.3.3) -,

Also, the keel block rows do not experience any net static

horizontal deflection since the inclination angle of the block

cap is zero. Hence

F3sh =0. (4.3.4)

2) The dynamic block forces, Fdh as seen from Figure 4.7

equals to a force due to the modelled springs plus a

dissipative force due to system damping. In other words

Fdh (spring) = Fldh (spring) + F2dh(spring) + F3dh (spring)

= Kshx + Ksh x + KkhX .

Fdh (spring) = (2Ksh + Kkh)x

Likewise

Fdh (dissipative) = Cx x

so

Fdh = (2Khs + Khk)x + Cx; (4.3.5)

where Ksh = side pier stiffness

Kkh = keel pier stiffness

Cx = system horizontal damping coefficient.

Substituting Equations 4.3.1, 4.3.3, 4.3.4, and 4.3.5

into Equation 4.3.2 and rearranging components yields

mll 1  + m12  + c I x + kl x =-mll xg (4.3.6)

where mll M

m1 2 = M KG

c= C= system horizontal damping coefficient

kll = (2Ksh + Kkh) = system horizontal stiffness

Summing the moments about the origin in a similar fashion

--35-,



as the previous degree of freedom case, as shown in Figure

4.7, yields the second equation of motion,

ZMK = Ike + MKG u - MKG yg sine

B/2(Flsv - Fldv) - B/2(F 2 sv + F2dv) + WKG sine (4.3.7)

The second equation can be reduced as it was in the one degree

of freedom case to

k6 + KG x + C6 + (B2/2 KSv -

= MKG Xg + MKG yge. (4.3.8)

Once again, the non-linear term, MK-G yg6, found in

Equation 4.3.8 will be removed leaving a linearized equation

since e is assumed to be small. The effects of the nonlinear

term will be evaluated in Sections 6 and 7.

Now the system of equations for the two degree of freedom

vessel-drydock system is as follows,

Mlx + M12 7 + cll x + kll x = -ml, Xg (4.3.9a)

and

m2 2  + m2 1 x + c1 2 1 + k2 2
6 = -m2l Xg (4.3.9b)

where mll =M

m21= m 1 2 = MKG

m22= Ik

c= system horizontal damping coefficient

c2 = system rotational damping coefficient

kll = 2Ksh + Kkh

k22 = B2/2 Ksv - WKG.

These two equations of motion are coupled in the mass times

-36-
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acceleration term, which is known as inertial coupling. Also

the equations are coupled in the damping term, because the

system's two natural modes have translation and rotation

involved in them. This model uses 5 percent of the critical

damping coefficient as system damping. To evaluate damping, a

modal analysis for the system is performed. This analysis is

performed in Appendix 3. Substituting damping coefficients

into Equations 4.3.9a and 4.3.9b, the equations of motion can

be expressed in matrix notation as Equation 4.3.10:

[M] {y') + [C) ( ) + [K {y') = (E' (t)} (4.3.10)

where

{v'}= Resnonse Vector =

[M] = Mass Matrix = -1
1m21 22 ...

[CI : Damping Matrix = [11 c121- LC2'1 '122J1'-

c "
212 22

k02 0

[K]1 Stiffness Matrix [l ~

{E'(t)) Seismic Forcing Vector= l Xg

To simplify the explanation, the matrices will be redefined as

[A) 1y) + [B) (Y} = (E(t)} (4.3.11)

where

[ IA_ c ...

-37-
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[B] []
- o~ [K] "-"

I{Y'i

{E (t)}={ t}

441'4.

"4"4
IJ

E{ains436,438 an 4311wilbesovd.n etin

This section develops a three degree of freedom

mathematical model of a drydocked submarine. The idealized

k- model of the vessel-cirydock system is shown in Figure 4.8. In

this system, vessel motion ii~ restricted to rotation about the

keel, and in horizontal transverse and vertical translations

relative to the keel and side pier supports. The approach for

determining vessel-drydock failure is identical to the two

degree of freedom case.

Lf The three degree of freedom mathematical model predicts

and analyzes submarine rotational, horizontal and vertical

-38-
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transitional responses caused by seismic ground accelerations

normal to the vessel's longitudinal axis. The rotational

response is in radians, the translational response in inches,

and all three responses are expressed as a function of time.

The keel and side pier forces generated by the responses are

compared to applicable pier failure criteria found in section

3 to check blocking stability.

4.4.2 Three DeQree of Freedom Equation of Motion Model

As in the two degree of freedom case, the keel is the

origin for the three degree of freedom system with absolute

rotation, £, and translation coordinate, x, is the horizontal

vessel motion relative to the drydock. The linear relative

translation coordinate, y, is defined with respect to vessel

and drydock translation relative to the ground. This

coordinate y describes the vertical motion of the vessel

hull relative to the drydock and the drydock blocks. Defining

v as the position of the submarine keel relative to the

ground, then the following relationships hold;

y = v - yg

v = y + yg

and v=y + yg (4.4.1)

Likewise, u-- x + Xg (4.4.2)

The simplified vessel-block system showing coordinates (x, y

and P) at rest and when excited are shown in Figure 4.8 and

4.9 respectively.

As developed in Section 4.3.2, the first and third

equations of motion in the three degree of freedom model are

Mx + MKG + Cxx + (2Ksh + Kkh)x = -Mxg (4.4.3)
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and

Ik +MKG x MK=ye + C

4 +[(B2/2)Ksv - Wk-]9= -MK-G Xg + MKG yg0  (4.4.4)

A balance of forces in the y direction, as shown in

Figure 4.9, yields the second equation of motion

IFy Mv = (Flsv Fldv) + (F2sv -F2dv)
4° .

+ (F3sv - F3dv) - W. (4.4.5)

The above equations can be simplified by the following:

1) The vessel weight, W, must be equal to the summation

of static block forces so that static equilibrium holds true,

i.e.

Fisv + F2sv + F3sv = W (4.4.6)

2) The dynamic block forces, Fdv, as seen from Figure

4.9 equals to a force due to the modelled springs plus a

dissipative force due to system damping. These dynamic block

forces are only a function of vertical displacement, y, and

velocity, y. The formulation of these forces is identical to

the procedure used in Section 4.3.2 and will not be repeated.

The final form of the dynamic block forces, Fdv , is

Fdv = (2 Ksv + Kkv)y + Cy y (4.4.7)

where Ksv = side pier vertical stiffness

Kkv = keel pier vertical stiffness

Cy = system vertical damping coefficient.

Substituting Equations 4.4.1, 4.4.2, 4.4.6 and 4.4.7 into

Equation 4.4.5 and rearranging components yields

My + Cyy + (2Ksv + Xkv)y = -Syg. (4.4.8)

The above equation along with Equations 4.4.3 and 4.4.4

-40-
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formulate the three equations of motion for the three degree

of freedom model.

The non-linear terms, MKGy6 and MGyge, found in

Equation 4.4.4 will be removed at this time leaving a

linearized equation since e is assumed to be small. The

effects of the non-linear terms will be evaluated in Section 6

and 7.

Now the system of equations for the three degree of

freedom is as follows;

mll x + e 1 3 e + cl x + kll x = -ell Xg (4.4.9a)

iM2 2 y + c2 y + k2 2 Y = -M2 2 Yg (4.4.9b)

m3 3 e + m3 1 x + c3 6 + k33 6 = -m3l Xg (4.4.9c)

where ll = m 2 2 = M

ml 3 = m 3 1 = G

m3 3 =I k

c = system horizontal damping coefficient

c2 = system vertical damping coefficient

c3 = system rotational damping coefficient

kll = 2Ksh + Kkh

k22 = 2Ksv + Kkv

k 3 3 = B
2/2 Ksv - WKG.

The first and third equations of motions, Equations 4.4.lla

and 4.4.11c, respectively, are coupled in the mass times

acceleration term, which is known as inertial coupling. Also, V

these equations are coupled in the damping term because two of

the system's three natural modes have horizontal translation

and rotation involved in them. The second equation of motion,

Equation 4.4.llb, is uncoupled from the rest of equations.

-41-



4-Hence, the last natural mode of the system only depends on

vertical translation.

In order to introduce damping, this model uses 5 percent

4-4- of the critical damping coefficient as system damping. To

evaluate damping, a modal analysis for the system in question

must be performed. This analysis is performed in Appendix 3

System damping coefficients can be found using this modal4-.)

anlaysis technique, but for now, the coefficients will be left

in terms of c1l, c13 , c22 , c31 and c33. Substituting these

coefficients into Equations 4.4.11a, 4.4.11b, and 4.4.11c, the

equations of motion can be expressed in matrix notation as

Equation 4.4.12:

[M] {y!L + [C] (yL) + [E] (y} = {EI(t)) (4.4.10)

where

{y'} = Response Vector = y

'-11ml i 13

[M] = Mass Matrix = o 22 0

• m~31 o 33 ".,

[K] = Stiffness Matrix = k22 ]
{E'(t)} = Seismic Forcing Vector = -mll

22 -4-
-31 "

c 0 c
[C] = Damping Matrix =

-- 4

. o c22 o;,
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To simplify the explanation the matrices will be redefined as

[A {~1 + [f)(y) (E{(t)) (4.4.11)

where

-- 4-

F 0

t I C]]

I-[M]

~= 0 [K(]
~ qtoipnif 4.4.3 e4plaatio 4.4.8 adri.4.1 will be soedinas,.

{yA] = '4

-- .- "
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FIGURE 4.3
Idealized One Degree of Freedom Vessel- Drydock System at Rest
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FIGURE 4.4
Idealized One Degree of Freedom Vessel- Drydock System, .

Excited
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a FIGURE 4.6
Idealized Two Degree of Freedom Vessel-Drydock System at Rest
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FIGURE 4.7
Idealized Two Degree of Freedom Vessel-Drydock System,

Excited ~~.
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5.0 SYSTEM PARAMETERS

In order to study the response of a vessel-drydock system

to seismic loading, eleven typical configurations have been

selected for implementation into the one, two and three

degrees of freedom models developed in the previous section.

This section explores these eleven systems along with the

modeling of the pier blocks for stiffness.

5.1 Vessel-Drydock System Parameters

I Eleven drydock system configurations have been chosen for

analysis and are defined in Table 5.1. The vessel-drydock

parameters, corresponding to each system, were taken from the

g appropriate NAVSEA drawings.

TABLE 5.1

Vessel-Drydock Configurations

Block Longitudinal NAVSEA
System Hull Tyre Block Spring~ DrawingT

1 616 Composite 8 ft 845-2006640

2 616 Composite 16 ft 845-2006640

3 616 Timber 8 ft 845-2006640

4 616 Timber 16 ft 845-2006640

I.5 616 Timber Side/ 16 ft 845-2006640
Concrete Keel

6 726 Composite 8 ft 845-4862749

7 726 Composite 12 ft 845-4862749

8 726 Composite 16 ft 845-4862749

5,9 688 Composite/Timber 12 ft 845-4403511

10 637 Composite/Timber 12 ft 845-2140554

11 637 Composite/Timber 12 ft 845-2140554 .'-
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Table 5.2 lists the vessel radii, weight, distance from center

of gravity to keel, KG, moments of inertia about vessel center

of gravity, Ic.g" and keel, Ik, and side block transverse

spacing, B.

TABLE 5.2 *1u

Key Vessel Parameters

Hull
SYSTEM Radius Weight KG Icg Ik B

(inches) (Kips) (inches) (K-in-sec2) (K-insec2 ) (inches)

1-5 198 16,396 193 831,257 2;411,000 144

6-8 252 37,656 223 3,097,535 7,949,000 180

9 198 13,624 193 691,852 2,007,000 138

10-11 190 9,529 174 445,592 1,193,000 138 ,

5.2 Block ParametersI

The models developed in Section 4 require the evaluation

of the block's vertical and horizontal spring stiffness

constants, Kv and Kh. The spring stiffness is the amount of : -.

force required to produce one unit of displacement in the

respective direction. In order to facilitate the use of

Hooke's law in evaluating spring constants, the assumption of

homogeneous isotropic behavior will be used for the block

materials: wood and concrete. Both the side and keel piers

must be analyzed for Kv and Kh.

5.2.1 Vertical Stiffness Kv-

Using Hooke's Law, the linear relationship between

vertical applied force and deformation can be written as

F Eh
A H

50-.



where F = vertical force

A = area under applied force

E = modulus of elasticity

h = change in height ;-

H =original height.

Hence, the spring constant for a given material is

k F EA
v h H"

(5.1)

For the eleven drydock configurations, two types of

standard blocks (composite and timber) are used. A standard

composite block which is composed of a softwood cap, a

hardwood middle portion, and a concrete bottom can be modelled

as a series of three springs (Figure 5.1). The resultant

block spring stiffness is

kv block = [(l/kcap) + (1/koak) + (1/kcon) -1  (5.2) "-;

where

kcap = softwood cap spring constant

koak = hardwood middle spring constant

kcon = concrete bottom spring constant.

All three constants listed above are calculated from

Equation 5.1. A standard timber block is composed of a softwood

cap and a hardwood body (Figure 5.2). Its block spring -'"

constant is

kv block = [(l/kcap) + (1/koak)]-I" (5.3)

The total vertical stiffness for a drydock configuration

can be computed by multiplying kv block times the number of

blocks. The keel pier has a total vetical stiffness of
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Kkv= kv block * nk

and for the side pier

Ksv = kv block *ns

whre nk and ns are the number of blocks in one row for their

respective pier.

The values of total vertical stiffness for both keel and

side blocks of the eleven drydock configurations are found in

Table 5.4. The following parameters are used in the

formulation of Table 5.4:

A = cross-sectional area of softwood cap

Ecap = 22.5 ksi

Eoak = 31.675 ksi

Econ = 2,000 ksi

Hcap = 4 inches

Hoak = 29 inches for composite block

= 56 inches for timber block

Hcon = 27 inches.

5.2.2 Horizontal Stiffness Kh.

In order to determine the horizontal stiffness, two types

of deformation must be looked at. They are the block-cap

displacements due to bending and shear deformations. Modelling

as a continuous cantilever beam subjected to a concentrated

lateral force at the cap surface (Figure 5.3), the bending %-..-

displacement due to the applied force P of a composite block is

P(HI+H2 +H3 ) P(EI-E 2 ) (H2 +H3 )
= 3 1 -2 " 3

dB 3ElI + 3EIE 2I
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P (E2 I-E 3 1 3 ) H3

+ 3E E IT
2 3 3 (5.4)

where H, height of concrete (27 inches) -

H2 = height of hardwood (29 inches)

H3  height of softwood cap (4 inches)

E= modulus of elasticity of concrete

E2 = modulus of elasticity of hardwood

E3 = modulus of elasticity of softwood cap

I = moment of inertia of block's cross-section

13 = moment of inertia of cap's cross-section.

For the bending displacement of - timber block, Equation 5.4

still holds true with the alterations:

H1 = height of hardwood (27 inches)

E= modulus of elasticity of hardwood.

In shear, deformation can be determined by modelling the

composite block as an element subjected to shear stress at the

top (Figure 5.4). The shear displacement becomes

(1+' con)PH 1  
2 (l+\) wood) PH2

d cn +s AE AE

2 .- ,,.... -

2 (1±'\' )PH3+ woo
AE3

(5.5)

where A = area of cap's cross section

"wood = Poisson's ratio for wood (0.30 is used)

con = Poisson's ratio for concrete (0.15 is used).

By redefining H1 and El, Equation 5.5 yields the shear

displacement of a timber block.
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The horizontal spring constant of any one block can be
p .. .

determined through the Hooke's Law relation

kh = P/(dB + ds) (5.6)

The total horizontal stiffnesses for the keel and side piers

are

Kkh= kh * nk

and Ksh =kh * ns

The values for the total area of the rows of blocks for

each of the eleven systems are listed in Table 5.3. Also listed

are the corresponding total area of the cap blocks for a row of

side or keel blocks. The values of total horizontal and

vertical stiffnesses of the keel and side piers for the eleven

drydock configurations are listed in Table 5.4.
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TABLE 5.4

Total Keel and Side Pier Stiffness in Pounds Per Inch

System Kkv Ksv Kkh. Ksh

41 50089159 7545899. 14018741 2612721

2 50089159 3903051. 14018741 1351407.

3 28493109 4292468. 5161684. 1282216.

4 28493109 2220242. 5161684. 663215.3

5 50089159 2220242. 14018741. 663215.3

6 98356895 52105736 24330635 16104611

7 98356895 34542004 24330635 10676090

8 98356895 26345596 24330635 8142780.

9 21758374 8239775. 3941650. 2683291.

10 16577809 6765289. 3072572. 2139500.

11 16577809 5464271. 3072572. 1728057.
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FIGURE 5.1
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FIGURE 5.2
Standard Timber Block stiffness Model
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6.0 VESSEL RESPONSE TO SEISMIC EXCITATION

This portion of the thesis discusses methods of

determining the seismic response of the vessel-drydock system

mathematical models developed in Section 4. The numerical

analysis schemes to be implemented are a modal analysis method

(Section 6.1) which looks at the linearized equations of

motion, and a fourth order Runge-Kutta numerical method

(Section 6.2) which analyzes the non-linear aspect and also

verifies the linear solution. Section 6.3 incorporates a

response spectrum analysis to solve the mathematical models.

Finally, Section 6.4 generates system response for the eleven

vessel-drydock configurations using the quasi-static force

method.

6.1 Vessel Response Using Modal Analysis

In order to use the modal analysis method described

herein, only the linearized equations of motion mathematical

models can be evaluated. These are Equations 4.2.8, 4.3.11

and 4.4.11 which correspond to the one, two, and three degree

of freedom models respectively. Since all three linearized

equations are in the form

E(i)+ [](y} --E~)}

the three degree of freedom model will be analyzed. The other

two cases are just a reduced version of the third.

To solve the linearized three degree of freedom

equations of motion (4.4.11) in matrix notation and obtain

system responses as a function of time, the problem is

solved as an eigenvalue problem with a procedure described in

reference (13]. As a first step, the equat!3ns are decoupled.
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To accomplish this, first consider the free vibration problem

[A]ci} + [B]{y) = 0 (611)

Assuming Equation 6.1.1 has a solution in the form

{y = {) e

Equation 6.1.1 can be expressed as

X[A]{ + [B]{ = 0. (6.1.2)

where X = complex eigenvalues

{ } = modal vectors.

Solving the matrix determinant problem

I x[A] + [B) = 0 (6.1.3)

yields the eigenvalues. In the three degree of freedom case, %. -

[A] and [B] are 6 x 6 matrices hence the solution of Equation

6.1.3 will yield 6 eigenvalues. These eigenvalues will be

comprised of three sets of complex conjugates. Now the modal

vectors can be found by substituting the eigenvalues back into

Equation 6.1.2 and solving. The modal vectors are then

combined to form the modal matrix [4'] where

[4) [ ~1 {4'2 3 I~{4 5 ~ '6)

The equations of motion can then be decoupled by using the

modal matrix, i.e.

[4 ]T [A][i] = [--A.])

* . and

-."; [,IT [B][,] = --B-_. ..j-'

where [-A-,] and [-.B] are diagonal matrices.

Once the modal matrix is found, the forced vibration

problem is analyzed. Assume the following

and (z) [ ] {y),
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where z is a complex coordinate system. Equation 4.4.1 is now

expressed as

[A)[4](z) + [h] [mj (Z) = (Et)}.

Using [~jthe above equation can now be in the form

-' ~~-A,].. (1) + [-B-] (Z} = [y)T(E) -t-(N(t))

This will yield six uncoupled equation of motion in the form

ai ii(t) + bii zi(t) =Ni(t), i =1,6

or ii(t) -')i zi(t) =(l/aii) Ni(t) (6.1.4)

where 'I = -bii/aii.

The solution of Equation 6.1.4 is

Zi(t) f - e vit)Ni(Tr) dT, i =1,6. (6.1.5)

Once Equation 6.1.5 is solved, the {y} matrix is found by the

relationship

(Y) =[J{)

Recalling from Section 4.4.2 the terms of the three

degree of freedom equations of motion (y) matrix is

x

y

{Y) x

* y

L J.

Hence, the desired vessel-drydock system response can be found

in the fourth, fifth and sixth terms of the {y) matrix, i.e.

x, y and 8
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6.2 Vessel Response: Fourth Order RunQe-Kutta Numerical
Method

A fourth order Runge-Kutta numerical scheme is chosen to

analyze the non-linear equations of motion due to its

simplicity and easy use of computer programming. It also will

be used to verify solutions found by other methods. The

non-linear Equations 4.2.6; 4.3.6 and 4.3.8; 4.4.3. 4.4.4 and

4.4.8 correspond to the one, two and three degree of

freedom models respectively. Since all three systems of

equations are similar in form, only the three degree of ..
freedom non-linear model will be developed.

The three degree of freedom non-linear equations of

motion are

mll x + m 1 3  + clx + c 1 3  + kll x =-mll xg

m2 2 Y + c 2 2 y + k2 2 Y =-m 2 2 yg

and

m3 3 e + m31 x- m3 1 ye+ c 3 3 6 + c31  + k31 .

= -m 3 1 Xg + m3 1 Yg e.

The coefficient of the above equations can be found in Section

4.4.2. These equations can be rearranged into
+ l3Cll • c13 • kl.'"n 3  m x - - x (6.1.2a)

C k'"" c22 " 22 (E.l.2b)= M - -- -Y a ( 6 . .2 b
22 i 2 2 Y-q

and 31 " C3 m3C ( k 3 3 + m3 1 c 2 2  + m3122
+ -__ x -

3 33 M333 33 22 M22 M33 --

in3 1

m g (6.2.1c) , .%
33
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Equations 6.2.1a, 6.2.1b and 6.2.1c can be made into an

equivalent first order system by the following substitutions

R el(t,x,R,T)

=S =f 1 (t,y,S)

e=T =gl(t,O,y,R,S,T)

m-13 e (t,X,R,T)
M 2

S-f 2 (t,y,S)

T + - R gj(t,e,y,R,S,T).

The Runge-Kutta formulas [8] for this system are

ki = R ~~ l = h{e 2 (t,xn,RnT)

kIl hSn 1l2 = h~f (t,y,S)}
=l hTn £13 = hSg2 tTen,

k 21 -h(Rn 2T11) t21 = h~e2 (t,xn + 2 hliRn + 11l,Tn + 1)
1 12

k22 =h(Sn +f"-2) £22 = h~f2 (t,yn + P 2 2 Sn + !1 12 ))
1 1 2

~23 = (n +"T l3) t23 n ~ 2 te + 213,Yn Yk 12,

Rn + ltll, Sn + LlTn + !ltl3) I
1 2 1 212 2

k3l = h(Rn + VY2 1)£3 1 = hte 2 (t,xn + -f2l,Rn + LY.22,Tn --r 1 2 3)

1 1 2
k-32 = h(Tn + - 2)t32 = h{g 2 (t,yn + 2k 2,yn + 'fZ2 2))n

11 2

5 n + l 2 2 ,Tn + 2)
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41 h(Rn 3 Z41 = h{e 2(tXn + k3l, Rn + C31,Tn + t33))

42 h(Sn + Z32) E42 = h{f2(t,yn + 32, Sn + Z32))

"4 3  h(Tn + Z33) £43 h{g 2 (t,en + k33, yn " + "31,

Sn + /32, Tn + £33))

and lastly,

Xn+l = xn + + 2k21 + 2(231 + k41)

Yn+l = Yn + 1(l2 + 21222 + 2'-32 + h42)

en+ 1 en + 6(,l3 + 2h223 + 2h3 3 + k43)Rn+l = Rn + g 2 )_

Rn+l =Rn + g(ll + 2/21 + 2 31 + £41)
Sn+l Sn + (t12 + 2t22 + 2£32 + t42)

Tn+l = Tn + (Z13 + 2'23 + 2Z33 + £43)

where h is the time step. Hence, the desired vessel-drydock

system response can be found and system failure analyzed by

the iteration of the Runge-Kutta scheme.

6.3 Vessel Response: Response Spectrum Analysis

The degrees of freedom mathematical models developed in

previous sections produce a time history of the seismic

response of a drydocked vessel. These models use numerous

computer iterations to find their time history in order to

evaluate the system's maximum seismic response. Another way

to determine the maximum seismic response of a drydocked

vessel is the response spectrum analysis method. Simplicity

and fast results are characteristic of this spectrum method.

However, only maximum response is produced and no time history

is generated.

The response spectra are graphs of the maximum seismic

response of single degree of freedom systems over a range of
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system natural frequencies. These graphs are generated for

particular earthquake and can contain acceleration, velocity,

displacement, or combination of all three responses for the

given system. Simplified response spectra are plotted for

earthquake design analysis. The El Centro earthquake response

spectra graph, shown in Figure 6.1, will be used to confirm

the results of the mathematical models in this thesis. The

simplified spectrum portion of this graph is described in

reference [2] and updated in reference [7].

The simplified El Centro earthquake response spectra used

described the maximum relative displacement of the system

shown in the insert of Figure 6.1. The linear equation of

motion for this simple system is

mu + c i + ku = -m Ysa fa(t)

where u(t) = relative displacement of the mass with
respect to the support

and Ysa = maximum support acceleration.

The natural frequency of the system is given by

U,2 k/m

f =L/2

Using the response spectra graph and the particular frequency,

f, of the system of interest, the maximum value of the

relative displacement, um, is determined. In equation form,

the relative displacements of a single degree of freedom

system with 5% critical damping subjected to the El Centro

earthquake ground motions are:

for u < 2.24 rad/sec,

Umax = 1.4 (Ysa)max = 11.62 inches, (6.3.1)

-66-



:V" . ~ 2 .. 77"_%

for 2.24 < C < 12.74,

Umax = 1-9 (Ysa)max/A = 26.03/w inches, (6.3.2)

for w > 12.74,

Umax = 2.6 (Ysa)max/w2 = 331.53/w 2 inches. (6.3.3)

These formulas generated the simplified response spectrum

shown in Figure 6.2.

In order to use Figure 6.2 to verify the one, two and

three degree of freedom vessel-drydock models, some

manipulation must be performed. This is because the linear

equations of motion of the models do not exactly match those

of the system pictured in Figure 6.1. Examining the one

degree of freedom linear equation of motion (Equation 4.2.7);
1k6  •~k.:~ -- °

Ik + 2,Ikwn, +[(B 2/2)Ksv - WKG]e = -M KG Xg

or

e + 2 w nu + ([(B2/2)Ksv - W -G]/Ik) = -(M K/Ik) Xg. " "'

The natural frequency for the above equation is defined as

n2 = ((B2/2)Ksv - W

Using Figure 6.2, this frequency gives a corresponding Umax.

Hence, the maximum rotational response of the system, , is

then determined by the relation

emax M KG/Ik Umax.

Table 6.1 lists the maximum rotational response for the eleven

configurations found in Section 5.

,,..-.
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TABLE 6.1

One Degree of Freedom Vessel-Drydock System
Maximum Response Using Response Spectrum Analysis

System n 0 max
(rad/sec) (rads.)

1 5.580 0.01594
2 3.933 0.02619
3 4.141 0.02149
4 2.870 0.03100
5 2.870 0.03100
6 10.254 0.00698
7 8.327 0.00860
8 7.255 0.00987
9 6.147 0.01445

10 7.253 0.01299
11 6.498 0.01450

The response spectrum analysis to the two and three

degree of freedom systems is applied by means of the modal

method described in reference [2]. Concisely, the modal

method requires that the system natural modes be determined.

Then, the response of the system to a known forcing input can

be developed by mode superposition. Treating each natural

mode as a single degree of freedom system with its own natural

frequency, this method is good for simplifying seismic

response analysis. Since each natural mode acts as a separate

system, the maximum response may be determined. Then, a

conservative estimate for the maximum response of the original

system can be made by adding up the maximum response of each

mode.

4., The method of adding maximum modal responses gives an

upper bound for the maximum system rpsponse. Since there is a

known response spectrum, the amount in which each natural mode

contributes to the maximum response for a given input can be

-68
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determined. This is known as the participation factor of each

given mode. A full description and derivation of partici-

pation factors including implementation techniques can be

found in reference (2], and will not be presented here. The

participation factor for each natural mode in the two and

three degree of freedom case is calculated to confirm computer

generated results of maximum responses in Appendix 3.

6.4 Vessel Response: Quasi-Static Force Analysis

As described in Section 4.1, the quasi-static force

method replaces the earthquake motions by a force

corresponding to the vessel mass times 0.2g. This analysis

only allows rotation about the vessel's keel hence, the quasi-

static force analysis is itself a one degree of freedom model

with system response, in radians, determined by Equation

4.1.4, ie.

S= Ms/L2 Ksv

where Ms  448 **KG

A = displacement in tons

L = B/2. A

The results of this method are listed in Table 6.2. .71

4 1
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TABLE 6.2

System Response using Quasi-Static Force Analysis

SYSTEM e. IN RADIANS

1. 0.00809

2 0.01564

3 0.01422

4 0.0274

4 0.02749

6 0.00199

7 0.00300

8 0.04419

9 0.00670

10 0. 00051 A

11 0.00637
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7.0 COMPUTER SOLUTIONS

In this section of the thesis, the computer programs

needed to implement the mathematical models and the associated

seismic response are developed. Due to the numerous

iterations that is required for the modal analysis and

Runge-Kutta methods to effectively determine vessel-drydock

response, all computer work is performed at the MIT Joint

Computer Facility (JCF). The required computer programs are

written in Fortran 77.

In order to check the computer generated results, the

vessel-drydock mathematical models are subjected to a

sinusoidal earthquake input. The advantage being that closed

form solutions of responses to sinusoidal inputs can be

calculated. Thus, closed form response can be compared to the

computer generated responses.

Upon obtaining the correct results for a sinusoidal

earthquake, the El Centro earthquake's acceleration time

history is applied to the vessel-drydock system. The maximum

value of these computer generated results is compared to the

maximum response for the system predicted by the response

spectrum method found in Section 6.3.

7.1 Modal Analysis Solution

7.1.1 Computer ProQram Development

As described in Section 6.3, the program approaches the

problem by first assembling matrices A and B. The program

then uses the International Mathematical and Statistical

Library (IMSL) subroutine EIGZF resident on JCF to perform the
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systeml free vibration eigenvalue problem on matrices A and B.

The output of subroutine EIGZF is the modal matrix [4), of the

vessel-drydock system. Reference [4) contains further

information about subroutine EIGZF.

The equations of motion can now be de-coupled by using

the modal matrix. De-coupling the equations of motion leaves

equations of the form

ai ;i(t) + bii zi(t) =Ni(t) , ,m

where m is equal to twice the number of the particular degree

of freedom model, i.e. for the one degree of freedom -m 2.

a.. The solution to the above equation is

t

_1 f ebii/aii(t1T)
zi~) -ae Ni(-r) dr, i =l,m,

0

where ai and bii represent the diagonal elements of the

diagonalized A and B matrices, respectively. The integral

t

eN (T) dT
0

can be evaluated using Simpson's rule, which is

ZAi(t) =[(Ai(t -2Ar) + Ni(t -2AT))e-(bii/aii)
2 AT

+ 4Ni(t - AT)e-(bii/aii)AT+ Ni(t)]

where AT = data time increments

and A(t - 2Ar) = ZA(t) evaluated two time increments

Cs. previously. ~

The value zi(t) is evaluated as

zi(t) =(1/aii)(AT1/3)(ZAi(t)), i 1 ,m.
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To obtain the values of the system response for a

particular time, the relationship

Y} [ (z)

where (y} = system response vector is used, using the column
vector [z] for the time at which results are desired. The

values of block forces caused by the system response are

calculated every 0.02 seconds for the first 30 seconds of the

earthquake. Only the first 30 seconds are needed due to the

nature of the El Centro earthquake the seismic acceleration

after 30 seconds are small when compared to the first 30

seconds. The resultant block forces and vessel motions are

then checked against failure criteria established in Section

3. The amplitude of the seismic acceleration is reduced until

no block failure occurs. Hence, the maximum earthquake

acceleration, in g's, that the vessel-drydock system can

withstand without failure can be found.

The three degree of freedom vessel response computer

program is listed in Appendix 1. Since all three linearized

models found in Equations 4.2.8, 4.3.11 and 4.4.11 are in the

form

[AllY) + [B]{Y) =E(t)),

the three degree of freedom computer program is modified to

give the one and two degree model results.

7.1.2 Computer Program Input

The computer program listed in Appendix 1 evaluates the

horizontal and vertical translations and rotation of the three

degree of freedom vessel-drydock system in increments of 0.02

seconds. The program requires the following input: vessel
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weight, WEIGHT, in kips, keel to center of gravity height

(G), H, in inches, vessel mass moment of inertia about the

keel, IK, in kip-in-sec2 , time increments of ground

acceleration data, DTAU, in seconds, side and keel piers

vertical and horizontal stiffnesses, Ksv , Kkv , Ksh , and Kkh ,  :",

in kips/inch, gravitational constant, GRAVITY, in inch/sec2 ,

side and keel pier dimensions of width and height, BASE SIDE,

BASE KEEL, HTSIDE and HTKEEL, in inches, the coefficient of

friction between the block-block and ship-block interfaces, U1

and U2, horizontal distance between the center of vessel

contact with port and starboard side piers, BR, in inches,

vertical/horizontal ground acceleration ratio, AMP,

proportional limits of side and keel block materials, PLSIDE

and PLKEEL, in kips/in2, total cross-sectional area of side

and keel piers, SIDE AREA and KEEL AREA, in in 2, percent

critical damping, ZETA, vessel hull number, HULL, and finally

the vessel-drydock configuration number, NSYS. The following

is where these inputs can be found:

Table 5.1 NSYS and HULL

-Table 5.2 WEIGHT, H, Ik, and BR

Table 5.3 BASESIDE, BASEKEEL, HTSIDE, SIDEAREA

and EELAREA

Table 5.4 Kkv, Ksv, Kkh and Ksh.

The rest of the inputs are assumed to be

GRAVITY = 384 in/sec2

U1 = U2 = 0.5

PLSIDE = PLKEEL = 0.7 kips/in2

and AMP = 0.5.
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The value of 0.5 for the vertical/horizontal ground acceler-

ation ratio (AMP) parameter is used because no vertical

component of the El Centro earthquake acceleration was

available at the time of this thesis.

Damping coefficients equal to 5% of critical damping

(i.e. ZETA = 0.05) are assumed for the entire system. This

analysis for damping coefficients can be found in Appendix 3

and is implemented directly into the computer program.

Certain idealized system failure criteria from Section 3

need to be modified to accurately represent the vessel-drydock

system as it actually exists. As stated in Section 3.1, block

crushing occurs when the stress on the block exceeds the

block's proportional limit. The vessel rests upon soft wood

caps placed on top of the keel and side piers when in the

drydock cradle. Crushing of the cap is not considered a

failure due to its small size. For the blocking system

considered, the generated stresses are transferred through the

cap to the top drydock block.

Also, a side pier cannot tip inboard because the vessel

hull is not physically attached to the pier and cannot pull

the pier beyond it's upright position. The softwood cap on

top of the side pier causes the vessel force to be applied 12

inches from the inboard edge. As shown in Figure 7.3, this

causes the static force vector to fall outside of the middle

one-third of the pier base, as discussed in Section 3. Since

the pier will only tip in the outboard direction, the

resultant vessel force must fall in the outboard one-third of
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the pier base. Thus, this failure criteria (from Figure 7.3)

for the side pier is

HORIZONTAL FORCE < 2/3 Width - 12,0
VERTICAL FORCE Pier Height

7.1.3 Computer Program TestinQ

In order to validate the modal anlaysis method, the one

degree of freedom mathematical model is checked with a set of

sinusoidal ground accelerations for input. The input ground

motion was

E(T) = Xg = 323.95 sin(3.92t). (7.1.1)

'. This sample function is selected because its magnitude and

frequency closely match that of the maximum acceleration

portion of the El Centro earthquake. Also, vessel-drydock

system configuration #1 is chosen for this initial analysis.

The results of the one degree of freedom case will be compared

to the closed form solution.

The one degree of freedom linear equation of motion

(Equation 4.2.7) is of the form
e. + 2 n + 6,n e - " ME (-.) ...

k
The closed form solution of this equation is

t A

f=-M E(T) e sinco< (t-T) dT

0

-M KG [A(t) sindt- B(t) cosWdt] (7.1.2)
1k d

where

A(t) = f E(T) encosd T d..JW it d
0 e
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and B (t) E(T) e in W dT.
od

The results of a computer run with vessel-drydock system

#1 and sinusoidal excitation (Equation 7.1.1) indicate that

the maximum rotation angle e is 0.038243 radians at a time of

2.02 seconds. To confirm this value, Equation 7.1.2 has to be

evaluated

e(2.02)=-M KG [A(2.02) sinwd(2.O2 ) -B(2P2) c05wd(2 .O2 )]

2.02 LT

where A(2.02) =J 323.95 sin(3.92T) COswd T -r

0 e

2.02

arnd b(2.02) f 323.95 sin(3.92T) e iwd T

0

From Section 6.3,

f- ((B2/2)Ksv -W RG)/IK)l1/2

=5.580 rad/sec

and L,:d = u (l - 2)1/2

-5.573 rad/sec.

With these values of natural and damped natural frequencies,

the value of A(2.02) can be evaluated using the relationship

tf at jb at [a sin (b-c) t- (b-c) cos (b-c) t
f 2 2

0 2[a +(b-c)J

at[a sin (b~c)t- (b+c) cos (b+c) t]

2[a2 +(b+c) 2
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Substituting the values
J1

t = 2.02 :-:

a = wn = .279

b = 3.92

and c = Ld = 5.573

The value of A(2.02) becomes

323.95(e 5 6 3 6 )-i , _ .8307 = -153.1629

Similarly, for B(2.02),

t
S at at [(b-c)sin(b-c)t+acos(b-c)t]

e sinbt sinct dt = e 2.2
2[a +(b-c) ]

-eat [(b+c)sin(b+c)t+acos(b+c)t]'2 [a2+ (b +c ) 2 ] ""-

0
with the same values of a, b and c as before.

Evaluating, B(2.02) becomes

323.95 (e 56 3 6 )- * -.2191 = -40.3973

Now,

e(2.02) - 1 . 42.6979*193.0 [-153.1629*sin(2.02*5.573)
2.54 2411000.*5.573 -(-40.3973*cos(2.02*5.573)I

.038247 radians.

Comparing the computer generated solution (0.038243

radians) with the closed form solution (.038247 radians), it

can be seen that the computer program is calculating the one

degree of freedom rotation formula correctly.

One other simple method to check to see if the rotation

displacement time history is correct is to look at the .'.

waveform. At steady state condition, e(t) will be a

sinusoidal with the same frequency as the sinusoidal ground

acceleration. An amplitude different and a phase shift will
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. be present. The steady state solution [12] of a equation of

motion in the form

mx + ck + kx = F sinwt

is x = sin t-tan-1 2 r\

k N(l-r 2 ) 2+ (2Er)2

where r = wn

"n = (k/m)1/2 = Natural Frequency

= 1/2 c//s k= percent critical damping.

In this case,

= 5.580 rad/sec

r = 3.92/5.580 = .703

= .05

fFf M K -5 1051012.9 lb.in
2.54

k = 75071464 lb in.

so now,

e steady state = .027402 sin(3.92t - .1381) radians (7.1.3)

Figure 7.1 represents the sinusoidal ground acceleration

(Equation 7.1.1) and Figure 7.2 which represents the rotation,

e(t), of the vessel-drydock system as generated by the modal

analysis computer program. Note the same frequency between

Figures 7.1 and 7.2. The steady state portion of Figure 7.2

is matched to Equation 7.1.3. In conclusion the model

analysis method correctly predicts the one degree of freedom

mathematical model.
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7.1.4 Computer Program Results

The modal analysis method can now be used with the El

Centro earthquake data to predict the system response. Eleven

vessel-drydock configurations (Section 5.0) are analyzed for

maximum ground acceleration that the system can withstand

without block failure. Also, the first block failure modes

exhibited by the systems are found.

For the eleven vessel-drydock systems, the linearized

one, two and three degree of motion mathematical model

responses are calculated and listed in Table 7.3, 7.4, and

7.5, respectively. These tables can be found on pages .-

thru9-3. The program further calculates that vessel liftoff

(Section 3.4) will be the first failure mode to occur when

ground accelerations are greater than the maximum permissible

ground acceleration listed in Table 7.3, 7.4, a.z 7.5. The

maximum permissible ground acceleration is based on the

reduction of the El Centro acceleration amplitude until no

failure occur. However, the waveform remains unchanged.

In order to get a visual picture of the various

responses, vessel-drydock system #1 is selected to be plotted.

Figures 7.4; 7.5a and b and 7.6a,b, and c are the appropriate

responses for the one, two and three degree of freedom models.

Only the first thirty seconds of the earthquake are required.

to give the maximum system response as seen by the plots.

Note that the relative horizontal displacement (Figure 7.6a)

and rotation (7.6b) time histories of the three degree of "41

freedom model are indentical to the ones found in the two

degree of freedom model. This is due to the uncoupled
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vertical equation of motin found in the linearized three

degree of freedom case.

p As a check for the computer generated results, the system

maximum responses due to full magnitude El Centro earthquake

accelerations are compared to the system maximum responses

determined by response spectrum analysis in Table 7.1 and 7.2.

These tables are generated by combining the computer results

of various models and Tables 6.1 (Section 6.3) and A.3.3

(Appendix 3). Since the response spectrum method is an

approximate one (Section 6.3), the maximum 20% error between

its results and the computer results in the one degree of

freedom case is reasonable. Thus, the one degree program is

generating accurate results.

In the two degree of freedom case, the response spectrum

method predicts the worst case if the system's two natural

modes reach a maximum at the same time, and add together.

This happened in the rotational case, but only twice in the

relative displacement case. In the majority of the systems,

the computer generated rotational response actually exceeded

the rotational response predicted by modal analysis. The

- maximum 35% difference between the two results can be

accounted for because of the approximate, simplified response

spectrum mentioned earlier. The three degree of freedom case

has the same order of error as found in the two degree case as

shown in Table 7.2. Hence, all mathematical models perform

satisfactory using the modal analysis computer program.

-83-



TABLE 7.1

OeDegree of Freedom Equation of Motion Response Comparison
Oe Modal Analysis Computer Results of Linear System

e
System radians

1 0.01474
2 0.01618
3 0.01436
4 0.02966
5 0.02966
6 0.00832
7 0. 0115
8 0.01712
9 0.01512

10 0.01714

Response Spectrum Method Results of Linear System

System radians

1 0.01594
2 0.02619
3 0.02149
4 0.031
5 0.031
6 0.00698 '

7 0.0068
8 0.00987
9 0.01445

10 0.01299
11 0.0145
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TABLE 7.2

Three Degree of Freedom Equation of Motion Response Comparison
Modal Analysis Computer Results of Linear System

Sx Y e ¢;

System (inches) (inches) (radians)

1 0.27971 0.07374 0.01458
2 0.22661 0.10948 0.01636
3 0.53288 0.15395 0.01546
4 0.58122 0.18352 0.03130 I
5 0.24721 0.11703 0.02992
6 0.36179 0.06123 0.00814
7 0.39118 0.06870 0.00879
8 0.39889 0.07140 0.01154 -04

9 0.61065 0.11749 0.01587
10 0.57808 0.11970 0.01547
11 0.61730 0.11676 0.01734

Response Spectrum Method Results of Linear System

lxI I YI I
System (inches) (inches) (radians) .14

1 0.33275 0.10859 0.01646
2 0.27141 0.12225 0.02348
3 0.65142 0.19089 0.02350
4 0.53788 0.21491 0.02350
5 0.21468 0.12980 0.03202
6 0.45271 0.08025 0.00683
7 0.46833 0.09708 0.00866
8 0.46597 0.10762 0.01009
9 0.64366 0.15381 0.01552

10 0.65864 0.13662 0.01342
11 0.67467 0.14955 0.01552

NOTE: Two Degree of Freedom System Maximum Response
correspond to x and e.
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7.2 Fourth Order RunQe-Kutta Analaysis Solution

7.2.1 Computer ProQram Development

As described in Section 6.2, the Runge-Kutta scheme uses

a set of first order differential equations to describe the

second order vessel-drydock system. A simple example of this

procedure is done on the following equation

mx + cx + kx = f(t) + g(t)x

let r = x and rearranging yields two first order equations,

x=r

c k
r = -M r - x + f(t) + g(t)x

Now, the first order system can be implemented into a computer

program.

Briefly, the fourth order Runge-Kutta numerical scheme is

one that makes use of predicted velocity and acceleration at a

given time to compute the displacement and velocity for the

next time increment. This can be done by the basic

relationships

xn+1 = xn + xn t
and Xn+l = Xn + Xn At

However, x and x are not found by differentiation but

through the manipulations of the second order equation into a

set of first order equations. This can be done by procedure

shown in the previous paragraph.

The first step in the computer program development is to

place the set of first order differential equations into the

Runge-Kutta formulas shown in Section 6.2. The evaluation of

these formulas will predict the velocity and acceleration
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4., that will be used in the next time increment. Now, the system

response, both displacements and associated velocities, can be

calculated using the previous information. This process is

marched through time steps in our to produce a time history of

the system response.

Now, the values of block forces caused by the system

response are calculated every 0.01 seconds for the first 30

seconds of the earthquake. The first 30 seconds are only

required to analyze for maximum seismic response. The

resultant block forces and vessel motions are then checked

against failure criteria found in Section 3. The amplitude of

the seismic acceleration is reduced until no block failure

occurs. Like in the modal analysis method (Section 7.1), the

maximum earthquake acceleration, in g's, that the

vessel-drydock system can withstand without failure can be

found.

The Runge-Kutta analysis gives the ability to analyze

both the linear and non-linear equations of motion for the

one, two and three degree of motion mathematical models. The

non-linear three degree of freedom vessel response computer

program is listed in Appendix 2. The program is developed

around Equations 4.4.5, 4.4.6 and 4.4.8 and those found in

Section 6.2. Since all linear and non-linear models developed

in this thesis can be arranged into the Runge-Kutta formulas,

the non-linear three degree of freedom comptuer program is

modified to give desired model results.
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7.2.2 Computer Program Input .

The computer program listed in Appendix 2 evaluates the

horizontal and vertical translations and rotation of the

non-linear three degree of freedom vessel-drydock system in

increments of 0.01 seconds. The program requires the

identical input found in Section 7.1.2 for the modal analysis

method. Hence, the program inputs needs not be listed again.

Like in the previous case, Appendix 3 provides the damping

coefficients to be implemented into the computer program.

7.2.3 Computer Program Testing.

In order to validate the fourth order Runge-Kutta

numerical scheme, the linear one degree of freedom

mathematical model is checked with a set of sinusoidal ground

accelerations for input. The same input ground motion that

is used to validate the modal analysis is implemented in this

case, i.e.

E(T) = :g= 329.95 sin(3.92t). (7.2.1) [

This sample function is selected because its magnitude and

frequency closely match that of the maximum acceleration

portion of the El Centro earthquake. Also, vessel-drydock
4 .'.

system configuration #1 is chosen for this initial analysis.

The results of the linearized one degree of freedom case will

be compared to the modal analysis and closed form solutions.

The results of a computer run with vessel-drydock system

#1 and sinusoidal excitation (Equation 7.2.1) indicate that

the maximum rotation angle 6 is 0.038236 radians at a time of

2.02 seconds. Comparing this the computer generated solution

with the modal analysis solution (0.038243 radians) and the .,
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closed form solution (0.038247 radians) found in Section

7.1.3, it can be seen that the computer program is calculating

the linearized one degree of freedom rotation formula

correctly. Also, Figure 7.7 which represents the rotation, e

(t), of the vessel-drydock system as generated by the

Runge-Kutta computer program is essentially identical to

Figure 7.2 generated by the modal analysis computer program.

In conclusion, the fourth order Runge-Kutta method

correctly predicts the linearized one degree of freedom

mathematical model. Now, the computer program will be used -"-

for the linear and non-linear one, two and three degree of

freedom systems.

7.2.4 Computer Program Results

The fourth order Runge-Kutta analysis can be implemented

with the El Centro earthquake data to predict the system

response. Eleven vessel-drydock configurations (Section 5.0)

are analyzed for maximum ground acceleration that the ystem

can withstand without block failure. Also, the first block

failure modes exhibited by the systems are found.

For the eleven vessel-drydock systems, the linear and

non-linear one, two and three degree of motion mathematical

model responses are calculated and listed in Table 7.3, 7.4

and 7.5, respectively. These tables can be found on pages'9-

thru 93. The program further calculates that vessel liftoff

(Section 3.4) will be the first failure mode to occur when

ground accelerations are greater than the maximum permissible

ground acceleration listed in Table 7.3, 7.4 and 7.5.
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In order to get a visual picture of the various linear

and non-linear responses, vessel-drydock system #1 is selected -*

to be plotted. Figures 7.8, 7.9 a and b, 7.10 a, b and c are

the appropriate response for the linear one, two and three

degree of freedom models and Figures 7.11, 7.12a and b and

7.13 a, b and c are for the non-linear models. Note that

these figures are almost identical to Figures 7.3, 7.4a and b

and 7.5 a, b and c generated by the modal analysis method
h7

(Section 7.1.5). This reinforces the equivalency of the

results found by the two numerical shemes. This can also be

seen by comparing the system maximum responses of the

Runge-Kutta method to that of the modal analysis method. Both

are listed in Table 7.3, 7.4 and 7.5. The maximum error for

any given case is 5%. Hence, all mathematical models perform"

satisfactory using the fourth order Runge-Kutta computer

program.
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TABLE 7.3

Modal Analysis Method Results of Linear System

emax Time Maximum Acceleration
System (radians) (sec) (g's)

1 0.003390 6.64 0.0759
2 0.003883 9.28 0.0792
3 0.006033 9.22 0.1368

w4 0.006822 8.68 0.0759
5 0.004513 8.68 0.0462
6 0.001999 5.36 0.0792
7 0.002422 5.84 0.0924
8 0.002760 8.98 0.0792
9 0.005138 7.54 0.0990

10 0.004537 8.98 0.0990
11 0.004972 7.92 0.0957

4th order Runge-Kutta Numerical Method Results of Linear System

emax Time Maximum Acceleration
System (radians) (sec) (g's)

1 0.003390 6.64 0.0759 -

2 0.003882 9.27 0.0792
3 0.006032 9.22 0.1386
4 0.006822 8.68 0.0759
5 0.004153 8.68 0.0462

*6 0.002004 5.35 0.0792
7 0.002426 5.83 0.0924
8 0.002763 8.97 0.0792
9 0.005141 7.54 0.0990

10 0.004543 8.98 0.0990
11 0.004972 7.92 0.0957

4th Order Runge-Kutta Numerical Method Results of
Non-Linear System

0max Time Maximum Acceleration
System (radians) (sec) (a' Is)

*1 0.003391 6.64 0.0759
2 0.003883 9.27 0.0792
3 0.006032 9.23 0.1386
4 0.006825 8.68 0.0759
5 0.004154 8.68 0.0462
6 0.002004 5.35 0.0792
7 0.002427 5.83 0.0924
8 0.002764 8.97 0.0792
9 0.005139 7.54 0.0990

10 0.004546 8.98 0.0990
11 0.004970 7.91 0.0957
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TABLE 7.4
Two Degree of Freedom Equation of Motion Response

Modal Analysis Method Results of Linear System

Xmax ime 6Maximum
ma iemax Time Acceleration ~ ..i

System (inches) (seconds) (radians) (seconds) (g-'s)

1 0.064335 8.38 0.003355 9.02 0.0759
*2 0.063873 5.38 0.003927 9.26 0.0792

3 0.207826 5.42 0.006033 9.24 0.1287
4 0.127868 5.72 0.006887 8.66 0.0726
5 0.032138 5.80 0.003891 8.72 0.0429
6 0.090448 5.78 0.002037 5.36 0.0825
7 0.109531 5.46 0.002463 5.86 0.0924
8 0.095734 5.98 0.002770 7.82 0.0759
9 0.195410 6.06 0.005080 7.60 0.1056

10 0.167644 6.04 0.004487 7.84 0.0957
*11 0.172847 6.08 0.004856 7.54 0.0924

4th Order Runge-Kutta Numerical Method Results of Linear System

Xmax TimeMaximum
ma iemax Time Acceleration

System (inches) (seconds) (radians) (seconds) (7-'s)

1 0.064566 8.38 0.003358 9.02 0.0759
2 0.064934 5.38 0.003927 9.26 0.0792
3 0.207015 5.56 0.006034 9.24 0.1287
4 0.127317 5.72 0.006890 8.66 0.0726
5 0.032442 5.80 0.003891 8.72 0.0429
6 0.090984 5.78 0.002048 5.36 0.0825
7 0.110229 5.46 0.002466 5.86 0.0924
8 0.091996 5.98 0.002656 7.81 0.0759
9 0.194354 6.06 0.005074 7.59 0.1056

10 0.166760 6.03 0.004493 7.83 0.0957
11 0.174626 6.07 0.004860 7.55 0.0924

4th Order Runge-Kutta Numerical Method Results of Non-Linear System

4 Maximum
Xmax Time 6max Time Acceleration

System (inches) (seconds) (radians) (seconds) Ug's)

1 0.064597 8.38 0.003358 9.02 0.0759
2 0.064839 5.38 0.003926 9.26 0.0792
3 0.206443 5.56 0.006035 9.24 0.1287
4 0.127281 5.72 0.006892 8.66 0.0726
5 0.032442 5.80 0.003891 8.72 0.0429
6 0.090984 5.78 0.002048 5.36 0.0825
7 0.110274 5.46 0.002467 5.86 0.0924
8 0.092031 5.98 0.002656 7.81 0.0759
9 0.194361 6.06 0.005075 7.59 0.1056

10 0.166763 6.03 0.004493 7.83 0.0957
11 0.174636 6.07 0.004859 7.55 0.0924
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TABLE 7.5

Three Degree of Freedom Equation of Motion Response
Modal Analysis Method Results of Linear System

Xma Tme Ymx im eie Maximum
ma im mx iemax TieAcceleration

System (inches) (sec.) (inches) (sec.) (radians) (sec.) (F&s)

1 0.067132 8.38 0.017698 5.68 0.003501 9.02 0.0792
2 0.061211 5.38 0.025181 8.06 0.003765 9.26 0.0759
3 0.207826 5.42 0.060041 5.64 0.006033 9.24 0.1287
4 0.122056 5.72 0.038540 5.64 0.006574 8.66 0.0693
5 0.032138 5.70 0.015215 5.38 0.003891 8.72 0.0429
6 0,090448 5.78 0.019865 5.32 0.002037 5.36 0.0825
7 0.105619 5.46 0.018550 6.68 0.002375 5.86 0.0891
8 0.091745 5.98 0.016424 5.36 0.002654 7.82 0.0759
9 0.201516 6.06 0.038773 5.80 0.005238 7.60 0.1089

10 0.161863 6.04 0.033516 5.38 0.004332 7.84 0.0924 *.-

11 0.179020 6.08 0.033861 5.40 0.005030 7.54 0.0957'

4th Order Runge-Kutta Numerical Method Results of Linear System

Sytm Maximum
max Time max Time max Time Acceleration

Sytm(inches) (sec.) (inches) (sec.) (radians) (sec.) (7g's)

1 0.067373 8.38 0.017858 5.37 0.003504 9.02 0.0792
2 0.062228 5.39 0.025102 8.06 0.003761 9.27 0.0759
3 0.207015 5.43 0.059736 5.64 0.006304 9.25 0.1287 .
4 0.121529 5.73 0.038651 5.65 0.006577 8.67 0.0693
5 0.032442 5.81 0.014985 5.39 0.003891 8.79 0.0429
6 0.094623 5.78 0.019463 5.77 0.002130 5.37 0.0858
7 0.106292 5.47 0.018152 6.69 0.002378 5.87 0.0891
8 0.091996 5.99 0.016558 5.37 0.002656 7.82 0.0759
9 0.200428 6.06 0.039205 5.40 0.005233 7.60 0.1089

10 0.161009 6.04 0.033887 5.39 0.004338 7.84 0.0924
d11 0.180863 6.08 0.034608 5.40 0.005033 7.55 0.0957

4th Order Runge-Kutta Numerical Method Results of Non-linear System

Maximum
Xmax Time Ymax Time e max Time Acceleration

System (inches) (sec.) (inches) (sec.) (radians) (sec.) (7-s)

1 0.067283 8.38 0.017858 5.37 0.003507 9.02 0.0792
2 0.062050 5.39 0.025102 8.06 0.003763 9.27 0.0759
3 0.206406 5.57 0.059736 5.64 0.006037 9.25 0.1287
4 0.121484 5.73 0.038651 5.65 0.006580 8.67 0.0693
5 0.032443 5.81 0.014985 5.39 0.003891 8.79 0.0429

*6 0.094523 5.78 0.019463 5.77 0.002130 5.37 0.0858
7 0.106348 5.47 0.018152 6.69 0.002379 5.87 0.0891

/8 0.091968 5.99 0.016558 5.37 0.002656 7.82 0.0759V
9 0.200131 6.06 0.039205 5.40 0.005234 7.61 0.1089

10 0.160892 6.04 0.033887 5.39 0.004337 7.84 0.0924
11 0.180674 6.08 0.034608 5.40 0.005032 7.55 0.0957
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7.3 Discussion of the Models and Associated Results

Both the modal analysis and the Runge-Kutta numerical

methods give satisfactory results in determining the system

maximum response in the various models and configurations.

The maximum error in the comparison of the two methods for

any given run is 5%. This is excellent when considering that

each method has completely different basic concepts behind

them. The modal anlysis method runs faster to obtain the

result due to less computer operations. But, the Runge-Kutta

method is much easicr to program into the computer and is more

flexible. In all, both methods can be used to predict the

seismic response of the linearized one, two and three degree

of freedom models.

In the comparison of the one, two and three degree of

freedom responses, certain conclusions can be drawn. The one 4

degree of freedom model need only be used if system maximum

rotational response is the main concern to drydock system

design. This model gives results sufficiently close to the

rotation generated by the other two models. Since vessel

. liftoff of the side block is the first block failure to be

7: exhibited by the vessel-drydock system, the one degree of

freedom model adequately predicts the maximum earthquake

amplitude the system can withstand. Most of the vertical

displacement at the side pier is due to rotation and not of

relative vertical displacement as found in the three degree

model. Hence, the one degree of freedom system response

should be used to determine vessel roation and maximum

earthquake amplitude.
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The three degree of freedom system results should be used

for a parameter study on block failure modes and for block

design. This is because only the three degree model produces

all required displacements for estimation of generated forces

in both keel and side blocks. However, when the relative

vertical translations generated are small, the two degree

model can be used in block design,. The one degree model is

truely inadequate for block design since crushing and vessel

liftoff of the side blocks are the only failure modes.

The non-linear equations of motion mathematical models

needs to be addressed. As shown in Table 7.3, 7.4 and 7.5, the

*non-linearity of th system caused less than 1% difference

between the linear and non-linear responses. Under the eleven

respresentative vessel-drydock configurations, the non-linear

terms (ie. SG and Yge) should be removed from the equations of

motion. This linearization of the equations of motion will be

verified in the proceeding discussion.

The next step in the studying of the non-linearity of the

system is to determine, when the non-linear terms mentioned

.4 earlier should be included in the equations of motion. The

non-linear equation of motion for the one degree of freedom

model is

C k
1- -M KG M KG..

k I kg Ik g

Let Xg = a sin.t

YG= Xg
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M KG a/Ik =.
2A= kl/I k

and 2E = C6 /Ik. -

Substituting and rearranging the Equation of motion gives

e + 2EX + X2 e = -3 sinwt(l -ye). (7.3.1)

where X = system natural frequency

6 = normalized maximum amplitude

Y = ratio of vertical/horizontal amplitude.

Equation 7.3.1 not only represents the vessel-drydock system

but any other system than can be reduced to this form. A

parameter study is performed using k 6 and Y to determine

whether or not to use non-linear terms in the equations of

motion. The selection criterion will be when the non-linear

response (ie. Y 1 0) is different to the linear response (ie -'

= 0) by 10%. If for a given A, a and Y this criterion is

exceeded, then the non-linear term,YO, should be included. If

not, exclude them. For this study, letw = 3.92 rad/sec and

= 0.05 to emulate the sinusoidal excitated system with 5%

damping discussed in Section 7.1.3. Using a Runge-Kutta

numerical scheme, Figures 7.14 a, b, c, d and e are generated

by varying the three parameters. Note that a negative

indicates a phase shift of 1800 between the vertical and

horizontal sinusoidal excitation. The linearity selection

criterion of 10% difference holds true for the region marked P"Al

"N-L" for non-linear for a given B. In the case of the one

degree of freedom vessel-drydock systems, the linearizing of

the equations of motion can be shown on Figure 7.14b since 6 = . -

0.5,Y= 0.5 and A ranges from 2.870 rad/sec to 10.254 rad/sec

-96- .- 4

.. . .. . -N- .- ", . , .. . ". . .



(Table 6.1).

In order to verify the linearity selection criterion, a

linear point selected off of Figure 7.14b of B = 0.5, Y = 5.58

andy = 20.0 is implemented into the Runge-Kutta computer

program in Section 7.2. The nonlinear response equals

0.015839 radians compared to the linear response of 0.014741

radians when using the El Centro earthquake input. This is a

difference of 7.5% which is less than 10%. The linearity

selection criterion holds true. Now, a non-linear point of

= 0.5, x = 8.327 and y = 15.0 is implemented into the

Runge-Kutta scheme. The non-linear and linear responses are

.009652 and .008664, respectively. This is a difference of -

11.4% which is greater than 10%. The linearity selection

criterion is validated. Thus, vessel-drydock system should be

checked before selection of linear or non-linear models. "4

As mentioned earlier, Equation 7.3.1 can be used to

validate systems other than the vessel-drydock systems

subjected to sinusoidal ground acceleration whose frequency

matches that of the El Centro earthquake, ie. w = 3.92 -:-.

rad/sec. this can be done by modifying the appropriate

linearity selection criteria figure with

X, = X/3.92

and replotting the figure. This essentially changes Equation

7.3.1 into a ron-dimensional of

61 + 2 lX;l + X12 61 = 61 sint1 (I - Y1 61 )

where 61 = 6/u2 A ..
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8.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FURTHER

STUDY

8.1 Summary

This thesis investigates four models of the vessel-

drydock system for seismic analysis. These models are

implemented to determine vessel response to seismic loading

for eleven representative submarine-drydock systems. Using

Equation 4.1.4, the quasi-static force model generates various

vessel responses listed on Tabe 6.2. For example, the

submarine in system #1 will rotate about its keel 0.00809 when
subjected to a strong earthquake. The one degree of freedom

model predicts a maximum vessel rotation for system #1 of

0.01471 radians in response to the El Centro earthquake ground

acceleration history. This rotation of 0.01471 radians is

verified by the two and three degree of freedom models. See

Tables 7.2 and 7.3. This maximum seismic response of system

#1 can also be confirmed by the response spectrum method as

described in Section 6.3 and reference [1]. The response

spectrum method gives the rotation as 0.01594 radians. All

eleven systems have similar differences between the quasi-

static force model and the various degree of freedom models.

More important than the maximum vessel response due to

the El Centro earthquake of .33g magnitude is the maximum

permissible earthquake acceleration that a vessel-drydock can

withstand without failure. The maximum permissible

accelerations and associated vessel responses for the one, two

and three degree of freedom are listed in Table 7.3, 7.4 and

7.5, respectively. For example, the one degree of freedom
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model for system #1 predicts a maximum permissible

acceleration of 0.0759 g's with maximum vessel rotation of

0.00339 radians. The two degree of freedom determines a

maximum permissible acceleration equalling .0759 g's with

maximum vessel rotation and relative horizontal displacement

of 0.003358 radians and 0.064566 inches, respectively.

Finally, the maximum permissible acceleration of 0.0792 g's -

with associated vessel responses (rotation, relative

horizontal and vertical displacements) of 0.003504 radians,

0.067373 inches, and 0.017858 inches. The slightly higher

maximum permissible acceleration found in three degree

model is due to the beneficial effect of the vertical

displacement delaying failure of the system. However, as

shown by the other systems, this is not always the case. In

summary, the range of magnitudes known as maximum permissible

accelerations that the eleven systems could withstand without

liftoff is 13% to 42% of the magnitude of the El Centro

earthquake depending on system and model used.

8.2 Conclusions

* The quasi-static method currently used by the U.S. Navy

for seismic response analysis underestimates the block forces

caused by an earthquake the magnitude of the El Centro

earthquake. The one degree of freedom model adequately

predicts the vessel rotational response to seismic loading but - {

is ineffective in the analysis of possible failures to the

vessel-drydock system. The two degree of freedom model does a

good job of predicting vessel rotational and horizontal

translation response to seismic loading provided the response

-125-
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due to vertical acceleration is small, which is the case for

the eleven systems analyzed. Finally, the three degree of

freedom model predicts the vessel rotational, horizontal, and

vertical translation responses and can be used to completely
.r,

investigate various types of failure to the vessel-drydock

system in all eleven vessel-drydock systems examined. The

vessel would experience side pier liftoff failure during an

earthquake with the magnitude of the El Centro earthquake (ie.

0.33 g's). The various vessel-drydock systems would not

remain intact during this magnitude of earthquake. Also noted

that the fourth order Runge-Kutta numerical scheme should be

used to evaluate system response because of its simplicity,

results accurancy, and ease of introducing terms into the

Equation of motion.

8.3 Recommendations for Further Study

The seismic response of drydocked vessels needs further

investigation in three areas. First, a three degree of

freedom model which will allow vessel liftoff should be

studied so that other failure mode will occur. Second, a

study of the vessel-drydock system parameters needs to be

carried out to explore ways in which drydocked vessel seismic

response can be decreased. Third, an in depth study of the

drydock block itself in order to provide failure modes along ". -

with stiffness and damping characteristics for implementation

into mathematical models.

..-
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APPENDIX 1

C LINEARIZED THREE DEGREE OF FREEDOM SYSTEM RESPONSE USING
C MODAL ANALYSIS METHOD

integer ia.ib~ic,l~mm,n,ijobiz~ier,hull~nsys. flaglO
Integer flagl~flag2.flag3,flag4,flag5,flag6,flag7,flag8
real a(6,6) .b(6,6) ,beta~wk(72) Aieight,h,Ik.gravity
real m(3.3) ,cx(3,3) .k(3,3) ,sidearea,}ceelarea~plside
real baseside,basek<eel,htsidehtkceel~critl~crit2,crit3
real an(6,6) ,ac(6000) ,dtau~maxx,maxt~maxy,timex,timet
real rfl,rf2,rf3hfl,hf2hf3,ampaccmass,ampacmax
real kvs~vk,khs,khc,base,ht~counter
real timel,time2,time3,time4.time5,tlme6,time7.time8
real x(6000) ,t(6000) .y(6000),ri(7) ,si(7) ,pi(7) ,XSCL (6)
real bbbccc,wl2,wl ,w22.w2,w32 ,w3,model .mode3,capwidth
real mmxl,mmangl.rnx3,mmang3bramp,plkee,crit4,ul,u2
real timey,mmmnmlm.nmrnm2 ,nmmmm3,mmmmxn4
complex alfa(6),z(6,6),ad(6,6),bd(6,6),aa(6.6),bb(6,6)
complex g(6) v(6) ,yy(6,6000) .ABC(6),zt(6,6) .betal

O{ARACTER *4Q XLABELYLABEL, YYLABELYYYLABEL .DEC

C READ IN VESSEL AND DRYDOCK DATA; VESSEL WEIGHT,KG,I(ABOUT KCEEL), ,

C TIME INCREMENT OF DATA POINTS,VERTICAL STIFFNESS OF SIDE AND
C KEEL PIERS..HORIZONTAL STIFFNESS OF SIDE AND KEEL PIERS,
C GAVITATIONAL CONSTANTSIDE BLOCK BASE AND HEIGHT,
C KEEL BLOCK BASE AtrD HEIGHT,
C BLOCK-BLOCK AND BLOCK-HULL FRICTION COEFFICIENTS.
C SIDE AND KEEL BLOCK'S PROPORTIONAL LIMIT.
C SIDE PIER-VESSEL CONTACT AREA,KEEL PIER-VESSEL CONTACT AREA,

*C CAP BLOCK INCLINATION ANGLE.

read(44,*) weight,hIk.dtau,kvs,<vk,khs,khk~gravity
read(44,*) baseside, baselceel,htside,htkeel~ul~u2
read(44.*) br~amp,plside~plkeel~sidearea~keelarea,zeta
read(44,*) hullnsys
write (6,*) 'do you want response plots? (y orn)
read(5.15) dec

15 format (a)
do 10,i=1,6
do 11,J=1,6
a(i,j)=0.0
b(i, fl=0.0

11 continue
10 continue

do 12,1i=1,3
do 13, J=1,3
M(ij)=0.0
k (i J)=0 .0
cx(I1.j)=0.0

13 continue J.
12 continue

I,
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C CALCULATE SYSTEM PARAMETERS

m (1.1) =mass'.
m (1,3) =hmass- -

m(2,2)-mass
m (3.1) -mass*h
m(3,3)=Ik

k(1, 1)=(2*khs~khk)
kc(2,2)=(2*kvs+kvk)
kc(3. 3)=( (0 .5*kvs* (br**2 .0)) -(weight*h))

C DETERMINE NATURAL FREQUENCIES OF SYSTEM

- c=k11*k33-(,3*(, /(m(1,1) *m(3,3)-m(1,3) *m(3 1)

C

C NATURAL FREQ. MODE #1

w12=(-bbb-sqrt (bbb* *2 .0-4*ccc) )/2

wl=sqrt (w12)

C NATURAL FREQ. MODE #2

w22=k(2,2)/m(2,2)
w2=sqrt (w22)

C NATURAL FREQ. MODE #3

w32=(-bbb+sqrt(bbb**2.0-4*ccc) )/2
w3=sqrt (w32)

C MODE SHAPE #1 &#3

C DETERMINE Cll.C13,C31.C33
mmxl-m(1,1) +rn(13)/model
mmangl--model*m(3,1) +m(3,3)

I...mmx3-m(l,1) .m(1,3)/mode3
mmang3--mode3*m(3,l) +m(3,3)

mmmmml=2*zeta*mmx3*w3

mmmmm3=2*zeta*mmangl *wl
mmmmm4=2*zeta*mmang3*w3

cx (1.3)=(mmmmml-mmmmm2)/ (1/model-i/mode 3)

e cx(2,2)=2*zetam(2,2) t w2
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cx (3,1)=(mmmm3-mnrmxn4) /(model-znode3)
* cx(3,3)-munmm3-(cx(3,1) *zodel)

C SET UP A AND B MATRICES..PERFORM EIGENVALUE PROBLEM. ANDe
C DECOUPLE EQUATIONS OF MOTION

a(1,4)= m (1,1)
a(1,6)= m(1,3)

* *a(2,5)= m(2,2)
a(3,4)= m(3,1)
a(3,6)= m(3,3)
a(4,1)= !n(1l)
a(4,3)= m(1..3)
a(4,4)= cx(1.1)
a(4,6)= cx(1,3)
a(5,2)= m(2,2)
a(5,5)= cx(2,2)

a(6,1)= m(3,1)
a(6,3)= m (3,3)
a (6,4) =cx(3.l)
a(6,6)= cx(3,3)

N b(1,.1)= -xn(l,l)
b (1, 3) = -m(1,3)

b (3, 1) .- m(3,I)

b(4,4)= -m(,)

b(4,6)= k (1,3)
b(5,5)= k (2, 2)
b(6,4)= k (3, 1)
b(6,6)= k(3,3)

do 100, i=1,6
do 110, J=1,6

110 continue
100 continue

i a=6
lb=6 ~ .

Ic=6
Iz=6
n=6
ljob=2
call eigzf (b, ia.an, ib~n. ijob~alfa,betal.z. iz,wk. ler)
WRITE(6,*) wk(l).ier

DO 200,1=1,6
do 201,J=1,6

201 continue
200 CONTINUE

call mult (zt,a,aa)
call multc (aa,z,ad)
call mult (zt,b~bb)
call multc (bb,z~bd)
do 204,1=1,6
v (1)-1 .Obd (i. )/ad(i. 1)
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204 continue

C READ IN ACCELERATION DATA

do 300,n=1,5001,5
read (45,*) ac(n) ,ac(n+1) ,ac(n+2) ,ac(n+3) ,ac(n+4)

300 continue
C ESTABLISH FAILURE CRITERIA AND FLAGSI critl= min(ul. (u2'cos(be'za)+sin(beta))/

+(cos (beta) -u2'sIn (beta)))
crit2-min (ul,u2)
crit3= (0.66*baseside-12.0)/htside
crit4=basekeel/ (6 htkeel)
ampacc=1 .0
counter=0.0
azpacmaxo 0.0

10000 continue
fi a gi=0
flag2O0
fla g3=C
flag4=0
flag5=0
flag6O0g fiag7=0
tlag8=0

% flaglO=0
do 50000 i=1,6

%ABC (i)=0 .0
50000 continue

maxx-0 .0
S. !naxt=0 .0 ?

maxcyO.0

C SOLVE FOR Y.THE COLUMN~ MATRIX WHICH IS THE SOLUTION IN
C TH IMAGINARY COORDINATE SYSTEM WHEE THE EQUATIONS OF MOTION
C ARE DECOUPLED

do 301,1=3,3501,2
do 302,1=1,6
g(i)=(ABC(i)4ac(1-2)/2.54)*exp(v(i)*2*dtau)

+ 4.0*(ac(1-1)/2.54)Aexp(v(i)*dtau)+ac(l)/2.54
ABC(I)=g(i)

+ *ampacck-dtau/3

302 continue

C USING THE MODAL MATRIX ( 4thSth, AND 6th ROWS ).OBTAIN

C VALUES FOR TRANSLATIONS AND ROTATION

* . do 303, 1=1,6

303 continue
x(?mn)=s1 (6)
If (abs(x(rr).gt.abs(naxx)) then

timex--dtau' (1-1)
maxx=x (rr.'n)

endif
do 304. 1=1.6

% %
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304 continue
t(mm)=-ri.(6)
if (abs(t(mrn)).gt.abs(xnaxt)) thene

timet=dtau* (1-1)
maxt=t(mm) e.P.

endif
do 305, i=1,6
pi (i)z (54) 'yy(i'l)+pIi -1)

305 continue
y (mm) =pi1 (6)
If (abs(y(mm)).gt.abs(ma~cy)) then

timeydtau* (2-1)
maxy=y (m

endif

C CALCULATE VERTICAL AND HORIZONTAL FORCES CAUSED BY VESSEL,
C TEST FOR FAILURE

C CALCULATE FORCES ON SIDE/KEEL BLOCKS
rfl=kvs* ((weight/k (2.2)) -y(mmn) -(br/2) *t (mm))
rf2=kvs* ((weight/k (2.2)) -y (mm) +(br/2) *t (mm))
rf3=kvk* ((weight/k (2,2))-y(mm))
hflkhs* (x (mm))
hf2=khs* (x (mm))
h f 3khk *x (mmr)

C TEST FOR SIDE BLOCK SLIDING

if (flagl.eq.l) then
go to 400

else if (hfl.lt.0.0.and.rfl.gt.0.0.and.abs(hfl/rfl).gt.critl) then
timel= dtau* (1-1)
flagl=l

else If (hf2.gt.0.0.and.rf2.gt.0.0.and.abs(hf2/rf2).gt.critl) then
timel=dtau* (1-1)
flagl=l N

endi f
xlI x (Mmn)
yly (
tlt (rmm)

400 continue

C TEST FOR KEEL BLOCK SLIDING

If (flag2.eq.l) then
go to 410

else if (rf3.gt.0.C.and.abs(hf3/rf3).gt.crit2) then
time2=dtau* (1-1)
flag2=1

endif
x2=x (n~r)
y2=y (-m)
t2=t(mm)

410 continue -

C TEST FOR SIDE BLOCK OVERTURNING

If (flag3.eq.l) then
go to 420

else If (hfl.lt.0.0.and.rfl.gt.0.0.and.abs(hfl/rfl).gt.'rit3) then
tIme3= dtau' (1-1) -
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flag3=1
else if (hf2.gt.0.0.and.rf2.gt.0.0.and.abs(ht2/rf2).gt.crit3) then

time3=dtau* (1-1)
flag3=1

endif
x3=x (mm)
y3=y (m

40 t3=t(mm)
40 continue

C: TEST FOR KEEL BLOCK OVERTURNING

If (flag4.eq.l) then
go to 430

else If (rf3.gt.0.0.and.abs(hf3/rf3).gt.crit4) then

fla94=:.
endi f
x4=x (mm)
y4 =y(in.
t4=t (imr)

430 continue

C TEST FOR SIDE BLOCK LIFTOFF

If (flagS.eq.l) then
go to 440

else if (rfl.1t.0.O .or. rf2.1t.O.0) then
time5=dtaut (1-l)
flaqg=l

endif

y5=y (m
t5=t (mm)

440 continue

C TEST FOR KEEL BLOCK LIFTOFF

if (flag6.eq.1) then~
go to 450

else If (rf3.1t.0.0) then
time6=dtau* (1-1)
flag6=1

end.If
x6=x(mm)
y6=y (
t6=t(mm)

450 continue

C TEST FOR SIDE BLOCK CRUSHING

If (flag7.eq.l) then
go to 460

else if (rfl.gt.0.0 .and. (rfl/sidearea).gt.plside) then
flag7=l
time7=dtau' (1-1)

else If (rf2.gt.O.0 .and. (rf2/sidearea) .gt.plside) then
flag7=l
tire7=dtau' (2-I)
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endif
X7=x (mm)
y7=y (mm)
t7=t (mm)

460 continue

C TEST FOR KEEL BLOCK CRUSHING

if (flag8.eq.1) then
go to 470

else if (rf3.gt.0.0 .and. (rf3/keelarea).gt.plkeel) then

flag8=1
time8=dtau' (1-1)

endif
x8-x (mm)
y8=y (mm)
t8=t (mm)

470 continue

301 continue

C PLOT RESUL-TS
go to 999

60000 continue
if(DEC.EQ.'N') THEN
write(6.0) 'I am finishing.' .J

Go TO 998
endi f
write (6.') '1 am plotting.'
XSCL(1)=0.0
XS-L (2) =30. 0 a-

XLABEL='TIME IN SECONDS'
YLABEL='ROTATION IN RADIANS'
YYLABEL='RELATIVE HORIZONTIAL DISPLACEMENT IN INCIES'
YYYLABEL='RELATIVE VERTICAL DISPLACEMENT IN INCHES'

CALL QPICTR (X,l.1500,QXSCL(XSCL) ,QISCL(-2) .QXLAB(XLABEL),

QYLAB(YYLABEL) .QLABL()
CALL QPICTR (T.1.1500,QXSCL(XSCL-),QISCL(-2),QXLAB(XLABEL),

+ QYLAB(Y1LABEL) .QLABEL (4))
CALL QPICTR (Y,1,1500QXSCL(XSCL) ,QISCL(-2) .QXLAB(XLABEL).

+ QYLAB(YYYLABEL) .QLABEL (4))
998 go to 200CO
999 CONTINUE

if(ampacc.eq.1.0) then

write (46.4000) nsys

4000 forzmat(lx,/,28x.'**** System .,12,1x2***') 110.

write(46,4050) hull
4050 format(lx./,30x.'** Hull .3l'*)

write (46,4100)
4100 format(lx,//,28x,'* Ship Parameters '

write (46.4150)
4150 format(lx/5x,Weight'.x.'Moml(.t of Inertia',9x.'K.G.')

write(46.420
0 ) weight.Ik~h

4200 format(lx~f9.1,lx,'kips'lx~fll.l~lx'kips-insec2i.
43x,f6.l~lX. 'ins')

write (46. 4250)
425 ormat (lx,//26x. DrydockPaaer '
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write (46,4300)
4300 format (lx,!. lx. 'Side Block Height',3x. 'Side Block Width'.

+3x,'Keel Block Height',3x,'Keel Block Width')
write(46.4350) htside.baseside~htkeel~basekeel

4350 format (Zxf6.1,lx. 'ins',llx~f6.l,lx,'ins',llx,f6.llx. 'ins'.
+9x~f6.llx. 'ins')

write (46.4400)
4400 format(lx,/,lx, 'Side-to-Side Pier Distance')

write(46,4450) br
4450 format(lx~t7,f6.llx.'ins')

wr ite (46, 4470)
4470 format(lx,/,' Total Side Pier Contact Area'

+.3x.'Total Keel Pier Contact Area')
* write(46,4475) sidearea.keelarea

4475 format(lx.8x,fll.l~lx,'in2',14x~fll.l,lx.'in2')
write (46.4500)

4500 format(lx,/,lx.'Block-on-Block Friction Coeff'.3x.'Huli-on-Block
+ Friction Coeff')

write(46.4550) ul~u2
4550 format(lx~l~x~f7._3,23x~f7.3)

write (46.4600)
4600 format(1x,/,1x,'Side Pier Proportional Limit'.3xW'Keel Pier'

+,' Proportional Limit')
urite(46,4650) plside,plside

4650 format(lxl0x~f7.3.lx,'kips/in2'15x~f7.3,lx,'kips/in2')
write (46.4700)

4700 format (lx./,lx.'Side Pier Vertical Stiffness',3x,'Side Pier',
*Horizontal Stiffness')
write (46.4750) kvs~khs

4750 format(lx,3x~fll..lIx,'kips/in'.llx~fll.l~lx,'kips/in')
write (46. 4775)

4775 format(lx,/,lx,'Keel Pier Vertical Stiffness',3x.
+'Keel Pier Horizontal Stiffness')

write(46,4780) kvk~khk

write (46.4800)
4800 form-t.(lx.//,20x. '* System Parameters and Inputs*)

write (46.485C)
4850 format(lx,/,lx,'Input Forcing Function is Horizontal Component.,

-~of the 1946 El Centro')
write (46,4875)

4875 format(lx,20x,' Earthquake Acceleration Time History.')

write (46.4995)
4995 format(lx./.lx. 'Vertical/HAorizontal Ground Acceleration Ratio'

,3x. 'Data Time Incremert')
write(46,4990) amp~dtau

4990 format(lx,l~x,f6.3.t55,f6.3,lX,'sec')
write (46. 4900)

4900 format(lx./.lx. 'Gravitational Constant' ,3x. 'Percent System
+ Damping')

write (46.495C) gravity~zetalOO0.
4950 format(lx.7x. f6.2,lx. 'in/sec2' .l0x.f6.2,lx. '%/')

write(46,5000)
5000 format.(x,/,25x. 'Mass Matrix',//)

do 5100 i=:,3
write(46,5050) m(i~l) m(i, 2) mI3)

5050 format(lx~fl5.4,5xf5.4,5x~fl5.4)
5100 continue

write (46.5200)
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5200 format (lx,/,25x. 'Damping Matrix' ,/)
do 5300 1=1,.3
write(46,5250) cx(i.1),cx(i,2),cx(i,3)

5250 format(lx~fl5.4,5x~fl5.4,5x,f15.4)
5300 continue

write (46,5400)
5400 format(lx,/,25x,'Stiffness Matrix',/)

do 5500 i113
write(46,5450) k(i~l),k(i,2),k(i.3)

5450 format(lx~f15.4,5x,fl5.4,5x,fl5.4)
5500 continue

write (46,5700)
5700 format (lx,//

WRITE (46,6000)
6000 FORMAT (iX.'Undamped Natural Frequencies' ,t35, 'Mode #1',.t50.

+'Mode #2',t65,'Mode #3')
write(46,600l) wl,w2,w3

%6001 format(lx,t31,f7.3,lx,'rad/sec',t46,f7.3,lx.'rad/sec',t62,f7.3. -

+'rad/sec')

WRITE (46,6002)
.:6002 FORMAT(1X, 'Damped Natural Frequencies' ,t35, 'Mode #1' ,tSO,

% +'Mode #2',t65,'Mode #3')
WRITE(46.6500) wl*sqrt(l-zeta**2) ,w2*sqrt(l-zeta**2),w3*sqrrt(l-zeta**2)

6500 format(lxt3l,f7.3,lx,'rad/sec'.t46,f7.3,lx,rad/sec',t62,f7.3
+' rad/sec')

endif

write (46,10500) ampacc* 100
10500 format(lx,///,lx,'For Earthquake Acceleration of ',f6.2,'%

+,'of the El Centro',/)

write (46, 25000) 1
25000 format (lx, 'Maximums/Failures',t26, 'X (ins) ',t36, 'Y (ins) ',t~l,

+'Theta (rads)',t65,'Time (sec)')
write (46,25001)

6 ~~~25001 format(lx '------------- t25, --------t35. '------ t5C.
------------ t64 '-------

write (46,310) maxx,timex
310 format (lx,' Maximum X',t25,f9.6,t6S,fS.2)

write (46,311) maxy,timey
*311 format (lx,' Maximum Y',t35,f9.6,t65,f5.2)

write (46.312) maxt,timet
312 format (lx,' Maximum Rotation',t50,f9.6,t65,f5.2)

If (flagl.eq.l) then
flaglO=flaglO+1

LA write (46,313) xl~yl~tl,timel
L313 format (lx,'Side block sliding' ,t2S,f9.6,t35,f9.6,tSO,f9.6,

+t65, f5.2)

endif

If (flag2.eq.1) then
'S flaglOflaglO+l

write (46,314) x2,y2,t2,time2
314 format (lx,'Keel block sliding' .t25,f9.6,t35,f9.6,t50,f9.6,

IF ~t65,f5S. 2)
endif

if (flag3.eq.l) then

l e .

-136-

* ~~%



flaglO=flaglO+l
write (46,315) x3,y3,t3,time3

315 format (lx. 'Side block overturning' ,t25,f9.6,t35,f9.6,tS0.f9.6,
*t65. f5.2)

endif

If (flag4.eq.1) then
flaglO=flaglO+1

write (46.316) x4,y4,t4,time4
316 format (lx2'Keel block overturning' ,t25.f9.6,t35,f9.6,t5O,f9.6,

.4t65.f5.2)
endif

* if (flag5.eq.1) then
flaglDflaglO~l

write (46,317) x5,y5,t5.time5
317 format (lx,'Side block liftoff' t25,f9.G.t35,f9.6,t5O.f9.6,

+t65. fS.2)
endif

if (flag6.eq.1) then
flagl0=flagl0~l

write (46,318) x6,y6,t6,time6
318 format (lx,'Keel block liftoff' .t25,f9.6,t35,f9.6,t5O.f9.6,

+t65, f5.2)
endif

If (flag7.eq.1) then
flaglO=flaglO+l

write (46,319) x7.y7,t7.time7
319 format (lx,2Side block crushing' .t25,f9.6,t35,f9.6,t50.f9.6,

+t65. f5. 2)
endif

if (flag8.eq.l) then
flaglO=flaglO~l

write (46,32C) x8,y8.t8,time8
320 format (lx,'Keel block crushing' ,t25,f9.6,t35,f9.6,tS0.f9.6,

+t65. f5.2)
endif

if(flaglO.le.0) then
write (46. 11000)

11000 format(lx./,lx.'No failures occurred.')
if(counter.eq.l.0 .and. flaglO.l-.C) then
go to 60000
endif

* . if(counter.eq.0.0) then
ampacmaxapacc p-

* ampacc=ampacc . 1
counter=1 .0

* -write(6.*) 'I am In the secondary looping stage.'
endif
endif
if(ampacc.le.ampacmax) go to 20000
if(counter.eq.1.0) then
ampaccampacc- .01
else if(counter.eq.0.0) then
arpacc=ampacc-. 1

-' endif
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go to 10000 _

20000 continue
stop
end

subroutine mult (a,b~cyy)
real b(6,6)
complex a(6,6) .cyy(6,6),d(6)
do 100,.i=1,6
do 200,J=1,6
do 300,k=1,6
d (k) =a (i,k) *b (kJ)

300 continue
cyy(i~j)=d(1)+d(2)+d(3)+d(4)+d(5)+d(6)

200 continue
100 continue

return
end

subroutine xnultc (a~bcyx)
complex a(6,6),b(6,6),cyx(6,6),d(6)
do 100, 1=1,6
do 200, J=1,6
do 300, k<=1,.6

300 continue
cyx(i,j)=d(l) +d(2)+d(3)+d(4) +d(5)+d(6)

200 continue
100 continue

return
end
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APPENDIX 2

C NON-LINEAR THREE DEGREE OF FREEDOM SYSTEM RESPONSE
C USING FOURTH ORDER RUNGE-KUTTA METHOD

integer NN,l..mxn~nhull~nsys~flaglO
integer flaglflag2,flag3,flag4.flag5,flag6,flag7.flag8
real beta~weight~h,Ik,gravity
real m(3..3),cx(3,3).k(3,3).sldearea~keelarea,plside
real baseside~basekeel~htside,htkeel~critl~crit2,crit3
real ac(6000) ,dtau~raxx,maxtanaxy~timex~timet
real rfl,rf2,rf3,hfl,hf2,hf3,ampacc~mass~ampacmax
real kvs,kvk~khs~khk~base,ht,counter
real timel~time2,time3,time4,time5,tine6,time7,time8
real x(6000) ,t(6000) ,y(6000 ) .XSCL(6)
real bbb~ccc,wl2,wl,w22,w2,w32.w3,model,node3,capwidth
real mmxl,mmangl~mmx3.inangi,br~ampplkeel~crit4,ul,u2
real timey - !rnrmml *m:-=mmmmrm3,-mxnrnim4

real R,STAUA(5),B(),C()D(),E(5)F(5),G(5)I*{()
CHRACTER *40 XLABEL, YLABEL. YYLABEL. YYYLABEL ,DEC

C READ IN VESSEL AND DRYDOCK DATA: VESSEL WEIGHT,KGI(ABOUT KEEL),
C TIME INCREMENT OF DATA POINTS,VERTICAL STIFFNESS OF SIDE AND
C KEEL PIERSHORIZONTALT STIFFNESS OF SIDE AND KEEL PIERS,
C GAVITATIONAL CONSTANTSIDE BLOCK BASE AND HEIGHT,
C KEEL BLOCK BASE AND HEI GHT ,
C BLOCK-BLOCK AND BLOCK-HULL FRICTION COEFFICIENTS,
C SIDE AND KEEL BLOCK's PROPORTIONAL LIMIT,
C SIDE PIER-VESSEL CONTACT AREACEEL PIER-VESSEL CONTACT AREA,
C CAP BLOCK INCLINATION ANGLE.

read(44,*) weight,h.Ik,dtaukvs,kv<,khs,ldilcgravity
read(44,*) baseside. baselceel,htside~htkeel~ul~u2 -

read(44,*) br~anp~plsideplkeelsidearea~ceelarea~zeta
read(445*) hull,nsys
write (6,*) 'do you want response plots? (y orn)
read(5,15) dec

15 format (a)
do 12,i=1,3
do 13,)=1,3
m (1 J) =0 .0
k (i,j) =0.0

* cx(i..j)=0.0
13 continue

*12 continue

C CALCULATE SYSTEM PARAMETERS

massweight/grav ity

beta=asin (sqrt (br**2/(4h2)))
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7. 7

m (1.1) mass __

m (1, 3) =hniass
Vm (2.2) -mass

m (3.1) -mass'h
m(3,3)=Ik

k (2, 2) =(2 kvs~kvk)
k(3,3)=((0.5*kvs*(br*2.))-(weight~h))

C DETERMINE NATURAL FREQUENCIES OF SYSTEM

cc+ k11 k33-~.3*(,)/(m(1,1) m(3,3)-m(2...3) *m(3.1)

C

C NATURAL FREQ. MODE #1

wl2=(-bbb-sqrt (bbb**2.O-4*ccc) )/2
wl=sqrt (w12)

C NATURAL FREQ. MODE #2

w2 2k (2. 2) /mn(2, 2)
w2sqrt (w22)

C NATURAL FREQ. MODE #3

w32=(-bbb+sqrt (bbb* *2 .0-4* ccc)) /2
w3=sqrt (w32)

C MODE SHAPE #1 & #3

C DETERMINE Cl1,C13,C31,C33
mmxl--m(1,1) +m(1, 3)/model
mmang1--model~m(3,1) +m(3. 3)
mmx3-m(1,1) +m(1,3)/mode3
mzang3mode3*m(3.1)

4 m (3.3)
mmmmml=2*zeta~mmxl

5w1
S mmmmm2=2*zeta*mmx3*w3

rmmmm3=2*zeta *mmangl *wl
mmmmm4=2 4zeta~mrnang3*w3

- cx (1. 3) (mmmrl-mrnmmm2)/ (1/model-1/mode3)
*cx (1, 1) --mmmmml- (cx (1, 3) /model)
* cx(2,2)=2*zeta'm(2,2)

5 w2
5. ~cx (3.1) =(wmmm3-mrnnum4) /(model-mode3)

cx(3,3)=-mmrnmm3-(cx(3,1) *mode1)

C READ IN ACCELERATION DATA

do 300,n=1,5001,5

.54
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read (45.') ac(n),ac(n-1),ac(n.2),ac(n*3),ac(n+4)
300 continue . -

C ESTABLISH FAILURE CRITERIA AND FLAGS

critl= min(ul. (u2'cos (beta) +sin (beta))!
(cos(beta)-u2*sln(beta)))
crit2=-min (ul,u2)
crit3= (O.66*baseside-12.O)/htside 4

* crit4=basekeel/ (6*htkeel)
ampacc=1.0
counter=0.0
ampacmax=0 .0

10000 continue
flagl-0
flag2=0
flag3=0
flag4=0
f 1a gSO
flag6O0
flag7OD
flag8O0
flaglO=O

* maxx=0 .0
maxt=0.0
maxy=0.0
mm=0
X (1) 0 .0

y(l)=O .0
tR()=0.0
R=0.0

TAU=0 .0

C IMP~LEMENTATION OF EQUATIONS OF MOTION INTO THE
C RUNGE-KUTTA FORNULUS V

do 301,2=1,6000.
DO 3000,11=0,4
A( 11)=0 .0
B (11) 0 .0
C (11)=0 .0
D(11) =0.0
E (11) =0.0
F (11) =0.0
0(11) =0.0
1*1 (11) =0 .0

3000 CONTINUE

DO 302. NN=1,4
IF(NN.EQ.1) THEN
FF=0.0 ..-

ELSE IF (NN.EQ.2 .OR. NN.EQ.3) THEN
FF=0.5

ELSE IF (NN.EQ.4) THEN
FF=1 .0

ENDIF
A (N)=dtau' (R+FF'D (NW-i))

B(NN)=dtau' CS+FF*E(NN-1))



C (NN)=dtau* (TAU.FF*F (NN-1))

D(N=tu(-x(,)m22)(RF (N1)(k22/(,)

.*(y(mm).FF*A(NN-1))-.amp*ampacc*ac(l)/2.54)

+2.54)
HHNN)=dtau*((-cx(3,3)/m(3,3))*(AU+FF*F(NN-1))-(cx(3,1)/m3,3))

+* (S+FF*E (NN-1) ) -(k (3,3) /m(3, 3)) *(t(mm) ,FF*C(NN-1) ) *(z(3, 1)/m(3. 3))
.*((-cx(2,2)/m(2,2))*(R.FF*D(NN-1))-(k(2.2)/m(2.2))*(y(mn)+FF*A(NN-

.1))) *(t (imm)+FF*C(NN-1)) -(m (3, ) /m(3,3)) *ampacc*ac (1)/2.54)

E CNN) =(m (1,1) 'm(3. 3) *C(NN) -m (1,3)'m (3,3) *H.{ NN))!
* (m (3, 3) *m (1.1) -m(1, 3) *m(3, 1))

F (NN) = (HR(NN) - (mn (3, 1) /m (3, 3)) E (NN))
*302 continue

C DETERMINING SYSTEM RESPONSE

y (-m 1) =ym) + (A (1) + 2 *A(2) + 2*A(3) +A(4) )/6

x(mm.1)-x(mm) .(B(1) .2*B(2) .2*5(3) .5(4) )/6

t (mn+1)=t (mm) +(C (1) ,2*C (2).2*C (3).C (4)) /6

R=R+(D(1) +2*D(2) .2*D(3) .D(4) )/6

S=S. (E (!) 2*E (2) ,2*E (3).E (4)) /6

TAU=TAU (F (1) +2F (2),2*F (3).F (4)) /6

C MAXIMUM VALUES FOR TRANSLATIONS AND ROTATION

if (abs(x(ni)) .gt.abs(maxx)) then
timex=dtau* (1-1)e

maxx-x (nun
endif
if (abs(t(mm)).gt.abs(naxt)) then

timet=dtau* (1-1)
maxt=t (nu)

endi f
i f (abs (y (mm)) gt. abs (maxy)) then

tirney=dtau* ()-1)
maxy-y (mm)

endif

C CALCULATE VERTICAL AND HORIZONTAL FORCES CAUSED BY VESSEL,
C TEST FOR FAILURE

C CALCULATE FORCES ON SIDE/KEEL BLOCKS E-
rf1=kvs*((weight/k(2,2))-y(z)-(br/2)*t(mm))
rf2=kvs* ((weight/k (2.2)) -y(mn) *(br/2) *t (mm))
rf3=Ikvk* ((weight/k(2,2))-y(mn))
h f 1khs * (x (mm) )
hf2=khs' (x (mm))
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hf3=khkx(mm)
C TEST FOR SIDE BLOCK SLIDING

if (flagl.eq.l) then
go to 400

else If (hfl.lt.D.0.and.rfl.gt.0.0.and.abs(hfl/rfl).gt.critl) then

flagl~l
else if (hf2.gt.0.0.and.rf2.gt.0.0.and.abs(hf2/rf2).gt.critl) then

flagl~l
endif
xl=x (mm)

%yl-y (m
tl=t (mm)

400 continue

C TEST FOR KEEL BLOCK SLIDING

if (flag2.eq.l) then
go to 410

else if (rf3.gt.0.0.and.abs(hf3/rf3).gt.crit2) then
time2=dtau* (1-1)
flag2=1

end'
x2-x (mm)
y2=y (-m).p
t2=t(mm)

410 continue
C TEST FOR SIDE BLOCK OVERTURNING

if (flag3.eq.1) then
go to 420

else if (hfl.lt.0.0).and.rfl.gt.0.0.and.abs(hfl/rfl).gt.crit3) then

flag3l1
else if (hf2.gt.0.0.and.rf2.gt.0.0.and.abs(hf2/rf2).gt.crit3) then

flag3=1
endi f
x3=x (
y3=y (
t3=t (mmjr)

420 continue

C TEST FOR KEEL BLOCK OVERTURNING

If (flag4.eq.1) then
go to 430

else if (rf3.gt.0.0.and.abs(hf3/rf3).gt.crit4) then
time4=dtau' (1-1)
flag4=1

endif .

x4-x (mm)
y4='y (
t4=t(mm)

430 continue

C TEST FOR SIDE BLOCK LIFTOFF
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%

if (flag5.eq.i) thenp go to 440
else If (rfl.1t.0.0 .or. rf2.1t.0.0) then

time5=dtau* (1-1)
flag5=1

endif
% ~X5-x~mn)
% y5=y (mm)

i t5-t (mm)
440 continue

C TEST FOR KEEL BLOCK LIFTOFF

if (flag6.eq.l) then
go to 450

else if (rf3.lt.0.0) then
time6=dtau* (1-1)

endif fagl
x6-x(mm)
y6y (m
t6=t(mm)

450 continue

C TEST FOR SIDE BLOCK CRUSHING

if (flag7.eq.1) then
go to 460

else if (rfl.gt.O.0 .and. (rfl/sidearea) .gt.plside) then
flag7=1
time7=dtau* (1-1)

else if (rf2.gt.0.O .and. (rf2/sidearea).gt.plsIde) then -

flag7=1
time7=dtau* (1-1)

endif
x7-x (m
y7 =y (
t7=t(mm)

460 continue

C TEST FOR KEZL BLOCK CRUSH{ING

if (flag8.eq.1) then
go to 470

else If (rf3.gt.0.0 .and. (rf3/keelarea) .gt.plkeel) then

flag8=1
time8=dtaut (1-1)

endi! -

x8=x (mm) ..-

y8=y (mm)
t8=t(mm)

470 continue ,.%

301 continue

C PLOT RESULTS
go to 999

60000 continue
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If(DEC.EQ.-N-) THEN

GO TO 998

endif
wrlte(6.') 'I am plotting.'
XSCL(l) =0.0
XSCL (2) =30. 0
XLABEL='TIME IN SECONDS'%
YLABEL='ROTATION IN RADIANS'
YYLABEL='RELATIVE HORIZONTIAL DISPLACEMENT IN INCHES'
YYYLABEL= 'RELATIVE VERTICAL DISPLACEMENT IN INCHES'
CALL QPICTR (X..1,3000.QXSCL(XSCL) .QISCL (-2) .QXLAB(XLABEL),

+ QYLAB(YYLABEL) .QLABEL (4))
CALL QPICTR (Tl.300QXSCL(XSCL) ,QISCL (-2) .QXLAB(XLABEL),

+ QYLAB(YLABEL),QLABEL (4))

CALL QPICTR (Yl.3000.QXSCL(XSCL) ,QISCL (-2) ,QXLAB(XLABEL),
+QYLAB(YYYLABEL),QLABEL(4))

998 go to 20000
999 CONTINUJE

if(ampacc.eq.l.0) then

write(46,4000) nsys
4000 format(lx./,28x,'**** System '.12,lx,'****')

write(46.4050) hull
4050 format(lx,/,30x,'** Hull ',13,lx,'**')

write (46,4100)
4100 format(lx,//.28x2', Ship Parameters*)

10 write (46,4150)
dp4150 ±ormat(lx,/,5x. 'Weight' .8x,2Moment of Inertia',9x,2K.G.')

write(46.4200) weight.Ik,h
4200 format(lx~f9.llx,'kips',lx~fll.l~lx,'kips-in-sec2'.

+3x~f6.l.2X. 'ins-)
write (46,4250)

4250 format(lx,//,26x.'' Drydock Parameter*)
write (46,4300)

4300 format(lx,/,1x,'Side Block Height'.3x. 'Side Block Width',
+3x. 'Keel Block Height',3x.'Keel Block Width')

write(46,4350) htside~baseside~htkeel.basekeel
4350 format(2x,f6.1.lx.'ins' ,llx~f6.lx.'ins' ,llx~f6.llx. 'ins'.

+~9x,f6.l,1x. 'ins')
write (46,4400)

4400 format (lx,/,lx. 'Side-to-Side Pier Distance')
write(46,4450) br

4450 format(lx~t7,f6.l~lx,'ins')
write (46,4470)

4470 format(lx./,' Total Side Pier Contact Area'
+,3x. 'Total Keel Pier Contact Area')

write (46.4475) sidearea~keelarea
4475 format(lx.8x,fll.l~lx. 'in2',14x~fll.1,lx. 'in2')

write(46,4500) %
4500 format(lx./. lx.'Block-on-Block Friction Coeff',3x. 'Hull-on-Block .-

+ Friction Coeff')
write(46,4550) ul~u2

4550 format(lx.10x,f7.3,23x~f7.3)
wr ite (46,4600)

4600 format(lx,/.lx2'Side Pier Proportional Limit',3x,'Keel Pier'
*'Proportional Limit')
write(46.4650) plside~plside

4r-0; format(lx.10x,f7.3lx'kips/in2'15x~f7.3,lx,'kips/in2')
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write (46.4700)
4700 format(lx./,1x,'Side Pier Vertical Stiffness',3x,'Side Pier',

*'Horizontal Stiffness') -.

write (46.4750) kvs~khs%
4750 format(lx,3x,fll.1,lx,'}cips/in',llx,fll.l,lx..'kips/in')'i, '

write (46,4775)
4775 format(lx,/,lx2'Keel Pier Vertical Stiffness',3x,%

+'K~eel Pier Horizontal Stiffness')
write(46.47 80) kvk,khk

4780 format(lx,3x~fll.l,lx,'kips/in',llx,fll.l.lx.'kips/in')
write (46,4800)

4800 format(lx,//,20x,'* System Parameters and Inputs )
write (46,4850)

4850 format(lx./,lx.'Input Forcing Function is Horizontal Component',
+' of the 1946 El Centro')

write (46.4875)
4875 format(ix,20x,' Earthquake Acceleration Time History.')

write (46.4995)
4995 format(lx,/,lxA'Vertical/Horizontal Ground Acceleration Ratio'

+,3x,'Data Time Increment')
write(46,4990) amp~dtau

4990 format(lx,10x~f6.3,t55,f6.3,1X,'sec')
write(46,4900)

4900 format(lx./,lx,'Gravitational Constant',3x,'Percent System
4Damping')

write(46,4950) gravity~zeta*100.
4950 format(lx,7x~f6.2..lx,'in/sec2',l0x~f6.2.lx,'*/')

write (46.5000)
5000 forrnat(lx,/,25x. 'Mass Matrix',./)

do 5100 i=1,3
write(46.505L0) m(i~l),m(i,2).m(i,3)

5050 format(lx,fl5.4,5x~f15.4,5xfl5.4)
5100 continue

write (46.5200'
5200 format (lx,/,25x. 'Damping Matrix',!)

do 5300 i=1,3
write(46,5250) cx(il),cx(i.2),cx(i.3)

5250 format(lx~f15.4,5x~fl5.4,5x,f15.4)
5300 continue

write (46.5400)
5400 format (lx,/,25x. 'Stiffness Matrix',/)

do 5500 i=1,3
write(46,5450) k (1,1) k (1,2) k (1,3)

5450 format(lx~fl5.4,5x~flS.4,Sx,f15.4)
5500 continue

write (46,5700)
5700 format (lx,//)

WRITE (46.6000)
6000 FORMAT(1X, 'Undam'ped Natural Frequencies' .t35. 'Mode #1' .t50.

+'Mode #2',t65,'Mode #3')
write(46,6001) wl~w2,w3

6001 format(lx~t3l.f7.3,lx,'rad/sec',t46,f7.3.lx,'rad/sec',t62,f7.3 .

+' rad/sec')
WRITE (46.6002) .-

6002 FORMAT(lX,'Damped Natural Frequencies'.t35,'Mode #l'.t50,
#'Mode #2'.t65.'Mode #3')

WRITE(46.6500) wl'sqrt(l-zeta**2) .v2*sqrt(l-zeta**2) .w3*sqrt(l-zetp.2
6500 foriat(lx~t31f7.3lx,'rad/sec't46,f7.3lxrad/sec',t62f7.3.

+'' rad/sec')
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endif ?.

write (46,10500) ampacc* 100
10500 format(1x,///,lx,'For Earthquake Acceleration of ',f6.2,1 I

+,'of the El Centro',/)

write(46,25000)
25000 format(1x,'Maximums/Failures',t26.'X (ins) ',t36,'Y (ins) '.t5l.

+'Theta (rads)'.t65, 'Time (sec) ')
write(46,25001) -

25001 format(1. ------------- t5 .35 - - tO
----------- t64 --------

write (46,310) raxx,timex
310 format (lx,' Maximum X',t25,f9.6,t65.f5.2)

write (46,311) maxy~timey
311 format (lx,' Maximum Y',t35,f9.6,t65.f5.2)

write (46,312) maxt~timet
312 format (lx,' Maximum RotatIon',t5C.f9.6.t65.f5.2)

if (flagl.eq.1) then
flag1C=flaglO-.

write (46.313) xl~yl~tl~time.
313 format (lx,'Side block sliding' .t2S.f9.6,t35,f9.6,t5O.f9.6,

+t6S. f5.2)

endi f

If (flag2.eq.1) then
flaglO~flaglC.1

write (46,314) x2,y2,t2,time2
314 format (lx.'Keel block sliding' .t25,fg.6,t35,f9.6,t5O.f9.6,

+t65. f5.2)
endif

If (fJlag3.eq.1) then
4 flaglO=flaglo+1

write (46,315) x3.y3,t3,time3
315 format (lx,2Side block overturning' .t25,f9.6,t35,f9.6,t5Cf9.6,

j endif

If (flag4.eq.1) then
flaglOflaglC+1

write (46,316) x4,y4,t4,time4
316 format (lx, 'Keel block overturning' t25,f9.6,t35,f9.6,t50,f9.6,

4t65. f5.2)
endif

If (flagS.eq.l) then
flaglO=flaglO+1

write (46,31-;) xS,y5.t5,time5
317 format (lx,*Side block liftoff' ,t25,f9.6.t35,f9.6,t50,f9.6,

+t65,f5.2)
endif

if (flagG.eq.l) then
flaglO=flaglO.1

write (46,318) x6,y6,t6,time6
%318 format (lx,'Keel block liftoff' ,t25,f9.6,t35.f9.6.,t5O.f9.6,

*t65,f5.2)
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endif

%if (flag7.eq.1) then .%~

flagl=flaglO~l
write (46,319) x7,y7,t7,time7

319 format (lx,'Side block crushing' .t25,f9.6,t35.f9.6,t5..f9.6,
.t65,f5.2)

endi fi If (flag8.eq.1) then
flagl0=flagl-~1

write (46,320) x8,y8,t8,time8
320 format (lx,'Keel block crushing' .t25,f9.6,t35,f9.6,t5O.f9.6,

+t65, f5.2)
endif

if(flaglO.1e.0) then
write (46. 21000)

11000 forrat(lx,/,lx,'No failures occurred.')
if(counter.eq.l.0 .and. flaglO.le.0) then

- go to 600CC
endi f
if(counter.eq.C.0) then
ampacmaxampacc
ampacc=ampacc. .
counter=l .0
write(6,*) 'I am in the secondary looping stage.'
endi f
endi f
if(ampacc.le.ampacnax) go to 20000
if(counter.eq.l.0) then .-

ampaccampacc- .01 .~~-

else if(counter.eq.0.0) then
ampaccampacc- .1
endif
go to 10000

20000 continue
stop

end

UP
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APPENDIX 3

MODAL ANALYSIS OF THE TWO AND THREE DEGREE OF FREEDOM SYSTEMS

Since the vertical equation of motion is uncoupled from

the other equations, the three degree of freedom system need

only to be analyzed to obtain damping coefficients for both

degree of freedom mathematical models. Also, the maximum

response of the two systems will be determined using response

spectrum analysis with participation factors described in

Section 6.4.

The three degree of freedom equations of motions,

undamped, as shown in Equations 4.4.11a, b and c are

m 1l x + m 1 3  + kll x =-mlL Xg

m 2 2  + k 2 2 y = -m 2 2 Yg

and

m331 + m 3 1 x + k 3 3 ' = -M 3 1 Xg

where mll = m 2 2 = M

m13= m 3 1  MKG

m33 =Ik "" :

kll = 2Ksh + Kkh

k2 2Ksv + Kkv

k3 3 = (B2/2) Ksv - W KG.

To perform modal analysis, consider the free vibration system

mll x + m 1 3  + klx = 0

m2 2 y + k 2 2 y =0

and

m 3 3  + m 3 1 x + k3 3 e = 0.

Assume the system response is in the form
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X = i sin(wt + P.,.

Y = 02 sin(wt + p)-

and e = 43 sin(wt +p)

Now, the equations of motion are

mll(-4)l2 sin(wt + P + m1 3 (-32s in (wt + p))

+ kll (i sin(wt + p)) 0

m2 2 (4 2
2 sin(wt +p)) + k2 2 (2 sin(Wt +P))= 0

and

m3 3 (- 3 2 sin(wt + o))+ m3 1 (-41 2 sin(wt +p))

+ k 3 3 ( 3 sin(wt + p))= 0.

The trivial solution to the above set of equations is

sin(wt + Q) 0. Assuming sin(wt +p) = 0, then

[k -M 2 0 M W2 0o

k 2 2 -m 2 2 2 0 2 = 0 (A.3.1)

31k33-m33 L
m "0"J

These equations are solved for w by setting the determinant of

the first matrix equal to 0. However, the second row of the

matrix is uncoupled. Thus one solution for is .

2 k2 2/m 2 2.

Now, the determinant equation reduces to

4 2 m33-333 33 3 ) + 33 0.
M 1M33- 31 M31/ M 11 M33- 13 M31

Using the quadratic formula, the other values of w 2 are

-~b± -V U -'- b - - c  (A.3.2) " "-',

2

. . . . . . .. .. . . .
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where b = - ( +•
11 33 -m 31

k k
and c= in1 -1  3

11l33 13r31

Using parameters found in Section 5 for the eleven representa-

tive vessel-drydock systems, the natural frequencies wi, w 2 ,

and w3 for each system is calculated and listed in Table A3.1.

The mode shapes are determined with the relationship

(k1 l - mlI w2) ¢l - m13 2 @3 = 0 -

2or n m 1 3  I
.- k - = Li,3 =.-,[: ¢ ~3 kl-ll11 .

With mode shapes determined, the equation or motion can be

rewritten, including coupled damping

ill ; + m 1 3 0 + cll i + c1 3 0 + kll x = 0

m 2 2 y + c2 2 y + k2 2 Y = 0

and

nm3 3 0+ m 3 1 x + c3 3 e + c3 1 x + k3 3  = 0.

,. At natural frequencies wi, W 2 andw3 the coupled three degree'p

of freedom system acts as a single degree of freedom system

with the following relationship: .5'

(l ,3) = 
"

(@1/ 3)

and (4II¢3) x = 0-

'.' Using these relationships, the three degree of freedom 'P

,-. 3,-

equations of motion at the three system natural frequencies

are

• -'.51-"""
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(lull + (¢ 3 /qi)m 1 3 ] x + (Cll + (03/ i)c 31 ] x + kll x = 0

m2 2 y + c2 2 y + k2 2 y = 0 ,..

and

[ ($1/ 3 )m 3 1 + m3 33 ]' + 1(0 1/$ 3 )c3 1 + c 3 3 ]e + k33  = 0.

The damping coefficients for the problem are 5% of the

critical damping for each mode,

[Cll + (03/ I)C 1 3] = 2 EM 1 wn , n= 1,3 (A3.3a)

c22 = 2 m 2 2 w2 (A3.3b)

and

[( l/3)h c31 + c3 3 ] = 2 M 3 wn, n= 1,3 (A3.3c)

where = percentage of critical damping, 0.05 '-

M1 =ll + ( 3/01)n M 1 3

and M3 = m 3 3 + (l/¢3)n m 3 1 "

Substituting known values and rearranging Equations A3.3a and

A3.3c yields the following four equations:

Mode l, C11 + 0¢3/I)I c13 = 2 M 1

(i/¢ 3)1 c3 1 + c 3 3 = 2 & M 3 w 1

Mode 2, cll + ( 3/ 1)3 c13  2 M1 w 3

(1 i3)3 C3 1 + c3 3 = 2 M 3 (3

or cll + (¢3 Dl)i c1 3 
= 2 M, Gi 1

Cll + (03/l)3 c 1 3 = 2 MI w3

and ( / 3)1 c3 1 + c3 3 = 2 M3 w 1

(i/ 3)3 c3 1 + c3 3  2 E M3 w 3

Using the above set of equations and equation A3.3b, damping

coefficients c1l, c13 , c2 2 , c3 1 , and c33 are determined and

listed in Table A3.2 for the eleven vessel-drydock configura-

tions. Note that c1 3 equals to c31. In the two degree of

freedom case, the damping coefficients c1l, C1 2 , c2 1 , and c2 2  4-
-1'52
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are equal to those in the three degree problem, i.e.

Two Degree Case Three Degrree Case

cli Cl1

C12  C13

C 2 1  C 3 1

c 2 2  C3 3  .,.

Using the response spectrumn method and modal

participation factors, the maximum response of the two and

three degrees of freedom systems can be calculated. Starting

with the forced vibration equation

[i + ( 3 /Ct 1 ) in 1 3 ] x + c1 k + kll x =-i 1 1 xg

or c + k x 11

Equations 6.3.1, 6.3.2 and 6.3.3 predict a maximum response

for a 5% critically damped system for a given mode as

m 
.

(X) 11.62* 11 for w < 2.24 .

max n 1) '3+(3

else ~ ~ ~ ~ ll (x)"l n n3.3* mfrwlw 27

11 +( 3  m

Similarly for rotational response, the equation of motion is

[In 3 3 + ( 1/ 3)ii in3 ] e + C3 4+ k3 3 e = M31 Xg SA

or 
',

e+ [m33+(c1/ 3)n 3 J [m33+(Y1 c 3)nm3 l] Xg9
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and the maximum response for given mode is

m
(e max) n  1 .62 m31 f 2.24 -orwi w 12.7

m3 3 +( l/ 3 )nm3  r ,

.1b ( 26.03 . 31 ..'
or - "for 2.24 < a'1 < 12.74 ,.'', (max) n w m ( i 3 nm31 3'' ."= ..

331.53 in 3 1else (emax)n 2 for w1 ' w 3 > 12.74
"" [m~33+ 1 /3 n n31"2-.

Since being uncoupled, the vertical equation of motion is

m22 + c2 :? + k2 2 y = -M2 2 Yg

or c2y+k22 Y
.. y + I -yg -A.MP Xo.in2 2  gYg-MP'Cg

where AMP = ratio of vertical/horizontal El Centro earthquake

accelerations.

The maximum vertical response is -.4

(Ymax)2 = 11.62 * AMP for w2 < 2/24 " "

or

(Ymax) 2 - 26.03 * AMP for 2.24 < w2 < 12.74

else

(Ymax)2 331.53 * AMP for (2 > 12.74.
"" .

Now, the maximum response for each mode of the x and "

" equations and for the uncoupled y equation are calculated.
.4.

The configuration of the three degree of freedom system

at any time is a superposition of the two coupled natural mode

shapes along with the independent vertical maximum response.

The absolute maximum response to a given earthquake is the

numerical summation of the maximum response of each mode shape

times its respective participation factor. The general

4,,
, ~~-154- ...-

.-- 4



.- .

formula for each modal participation factor is

2Fn =EMr rn/ Mr rn

where F n = modal particpation factor for the nth mode

r- refers to which equation of motion is being

considered. In the three degree of freeddom

case, r = 1 or 3.

Using these particpation factors, the maximum response of the

three degree of freedom system should be no greater than

Xmax = (Xmax)i I + (Xmax) 3,

Ymax = (Ymax)2

and emax (emax)I F 1 + (emax)3 F 3.

These maximum response are determined and listed in Table A3.3

for the eleven vessel-drydock configurations. Once again due

to the uncoupled vertical response, the maximum response of x

and e in the two degree of freedom is identical to that of the -. 4

three degree of freedom case.
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TABLE A3.1 0% -1
Three Degree of Freedom Vessel-Drydock System

Natural Frequencies &.2 .
(rad/sec)

SYSTEM "l w2 w3

1 5.454 39.071 37.230

2 3.883 36.823 34.367

3 4.013 29.468 23.791

4 2.819 27.773 21.511

5 2.848 35.737 32.742

6 9.690 45.450 40.863

7 7.953 41.322 36.351

8 6.976 39.247 34.045 k

9 5.863 32.829 29.060

10 6.857 34.832 29.921

11 6.177 33.293 28.010 -4

NOTE: Two Degree of Freedom System Natural Frequencies
correspond to w, and w3 .
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TABLE A3.2

Three Degree of Freedom Vessel-Drydock System
Damping Coefficients

(kim-sec/inch)

SYTMcil c22  c33  c1 3, C31

J1 65.398 166.826 1322882.125 3920.416

2 58.612 157.226 938583.250 2874.701

3 42.452 125.824 976657.438 2829.964

4 37.308 118.583 682485.813 2053.786

5 54.303 152.588 687504.500 2159.187

6 188.657 445.695 7879946.000 17130.227

7 167.100 405.212 6430934.500 14269.135

8 155.786 384.866 5622059.000 12660.506

9 43.963 116.475 1196244.250 3340.509

10 33.833 86.437 836179.438 2408.758

.11 31.639 82.618 751062.813 2185.568

- NOTE: Two Degree of Freedom System Damping Coefficients
correspond to c1 l, c1 3, c3 l and c3 3 -

-157-



TABLE A3.:!

Three Degree of Freedom Vessel-Drydock System
Maximum Response Using Response Spectrum Analysis

SYSTEM (ins.) (i~s.) (rads.)

1 0.33275 0.10859 0.01646

2 0.27141 0.12225 0.02348

3 0.65142 0.19089 0.02350

4 0.53786 0.21491 0.02350

5.5 0.21468 0.12980 0.03202

6 0.45271 0.08025 0.00683

7 0.46833 0.09708 0.00866

8 0.46597 0.10762 0.01009 .

9 0.64366 0.15381 0.01525

10 0.65864 0.13662 0.01342

11 0.67467 0.14955 0.01522

NOTE: Two Degree of Freedom System Maximum Response
correspond to x and 6.
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